The objective of this study was to develop an experimental methodology for the extraction of polychlorinated biphenyls (PCBs) from contaminated soil and wood material using the Soxhlet extraction method and supercriti...The objective of this study was to develop an experimental methodology for the extraction of polychlorinated biphenyls (PCBs) from contaminated soil and wood material using the Soxhlet extraction method and supercritical fluid technology. The sample PCB contents were quantified using Gas Chromatography-Mass Spectrometry (GC/MS). Conventional extractions of PCBs from soil samples showed higher extraction yields for samples with the highest initial PCB levels and longest extraction times. Specific PCBs yielded 74.0% - 78.3% removal using ethanol as the solvent. 91.0% - 94.3% removal of the total PCB content was achieved using hexane as the solvent. Supercritical fluid extraction of soil samples resulted in 50.0% - 70.5% removal for specific PCBs and 57.3% removal of the total PCB content. For wood, the use of Soxhlet extraction resulted in 87.0% - 94.0% removal for specific PCBs and 95.0% - 96.3% removal of the total PCB content. Supercritical fluid extraction of wood samples resulted in 91.1% - 95.0% removal of specific PCBs and 95.1 % of the total PCB content.展开更多
<span style="font-family:Verdana;">The objective of this study was to evaluate the effect of blends of different oxygenated additives on gasoline in SI engine Otto cycle. The formulations analyzed were...<span style="font-family:Verdana;">The objective of this study was to evaluate the effect of blends of different oxygenated additives on gasoline in SI engine Otto cycle. The formulations analyzed were: pure gasoline (type A), common gasoline (type C), gasoline type A + 15% (v/v) oxygenated additives (ethanol, ethyl octanoate, ethyl oleate). The experiments were performed using engine Branco 4-stroke and 2-cylinder, electric dynamometer, exhaust system, control unit composed of Multi-K unit, variable selector and load cell, stroboscope tachometer, fuel supply system and stopwatch. The rotation was conserved at 4400 rpm and wheel power varied from 3 kW to 12 kW, with intervals of 3 kW to obtain hourly consumption curves and brake specific fuel consumption. Even esters and ethanol having lower heat of combustion, hourly consumption was similar to pure gasoline (type A). In relation to the brake specific fuel consumption, increasing the wheel power had a better conversion of the mass of fuel burned into energy. Thus, this study showed that the mixture of gasoline and esters (ethyl octanoate and ethyl oleate) presented good efficiency in terms of consumption. This research contributes to the needs and to the current studi</span><span style="font-family:Verdana;">es in which industries started to add renewable products to petroleum-</span><span style="font-family:Verdana;">derived fuels;in order to obtain more sustainable fuels at lower costs.</span>展开更多
基金The authors are grateful to Cepema-USP for laboratory support and Capes(Procad:213055)for financial support.D.J.Silva also thanks Capes for MS assistance.
文摘The objective of this study was to develop an experimental methodology for the extraction of polychlorinated biphenyls (PCBs) from contaminated soil and wood material using the Soxhlet extraction method and supercritical fluid technology. The sample PCB contents were quantified using Gas Chromatography-Mass Spectrometry (GC/MS). Conventional extractions of PCBs from soil samples showed higher extraction yields for samples with the highest initial PCB levels and longest extraction times. Specific PCBs yielded 74.0% - 78.3% removal using ethanol as the solvent. 91.0% - 94.3% removal of the total PCB content was achieved using hexane as the solvent. Supercritical fluid extraction of soil samples resulted in 50.0% - 70.5% removal for specific PCBs and 57.3% removal of the total PCB content. For wood, the use of Soxhlet extraction resulted in 87.0% - 94.0% removal for specific PCBs and 95.0% - 96.3% removal of the total PCB content. Supercritical fluid extraction of wood samples resulted in 91.1% - 95.0% removal of specific PCBs and 95.1 % of the total PCB content.
文摘<span style="font-family:Verdana;">The objective of this study was to evaluate the effect of blends of different oxygenated additives on gasoline in SI engine Otto cycle. The formulations analyzed were: pure gasoline (type A), common gasoline (type C), gasoline type A + 15% (v/v) oxygenated additives (ethanol, ethyl octanoate, ethyl oleate). The experiments were performed using engine Branco 4-stroke and 2-cylinder, electric dynamometer, exhaust system, control unit composed of Multi-K unit, variable selector and load cell, stroboscope tachometer, fuel supply system and stopwatch. The rotation was conserved at 4400 rpm and wheel power varied from 3 kW to 12 kW, with intervals of 3 kW to obtain hourly consumption curves and brake specific fuel consumption. Even esters and ethanol having lower heat of combustion, hourly consumption was similar to pure gasoline (type A). In relation to the brake specific fuel consumption, increasing the wheel power had a better conversion of the mass of fuel burned into energy. Thus, this study showed that the mixture of gasoline and esters (ethyl octanoate and ethyl oleate) presented good efficiency in terms of consumption. This research contributes to the needs and to the current studi</span><span style="font-family:Verdana;">es in which industries started to add renewable products to petroleum-</span><span style="font-family:Verdana;">derived fuels;in order to obtain more sustainable fuels at lower costs.</span>