期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Efficient Spin-Flip between Charge-Transfer States for High-Performance Electroluminescence, without an Intermediate Locally Excited State
1
作者 Donghai Zhang Shanshan Jiang +4 位作者 Xiaodong Tao Fulin Lin Lingyi Meng Xu-Lin Chen can-zhong lu 《Research》 SCIE EI CSCD 2024年第1期339-349,共11页
Thermally activated delayed fluorescence(TADF)materials with both high photoluminescence quantum yield(PLQY)and fast reverse intersystem crossing(RISC)are strongly desired to realize efficient and stable organic light... Thermally activated delayed fluorescence(TADF)materials with both high photoluminescence quantum yield(PLQY)and fast reverse intersystem crossing(RISC)are strongly desired to realize efficient and stable organic light-emitting diodes(OLEDs).Control of excited-state dynamics via molecular design plays a central role in optimizing the PLQY and RISC rate of TADF materials but remains challenging.Here,3 TADF emitters possessing similar molecular structures,similar high PLQYs(89.5%to 96.3%),and approximate energy levels of the lowest excited singlet states(S_(1)),but significantly different spin-flipping RISC rates(0.03×10^(6) s^(−1) vs.2.26×10^(6) s^(−1))and exciton lifetime(297.1 to 332.8μs vs.6.0μs)were systematically synthesized to deeply investigate the feasibility of spin-flip between charge-transfer excited states(^(3)CT–^(1)CT)transition. 展开更多
关键词 transition. LIFETIME DESIRED
原文传递
Reversible potassium storage in ultrafine CF_(x): A superior cathode material for potassium batteries and its mechanism
2
作者 Hongjun Yue Huixin Chen +6 位作者 Chen Zhao Zhiming Zheng Ke Zhou Qjaobao Zhang Guiming Zhong can-zhong lu Yong Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第2期347-353,I0012,共8页
Current studies of cathodes for potassium batteries(PBs) mainly focus on the intercalation-type materials.The conversion-type materials that possess much higher theoretical capacities are rarely discussed in previous ... Current studies of cathodes for potassium batteries(PBs) mainly focus on the intercalation-type materials.The conversion-type materials that possess much higher theoretical capacities are rarely discussed in previous literatures.In this work,carbon fluoride(CF_x) is reported as a high capacity conversion-type cathode for PBs for the first time.The material delivers a remarkable discharge capacity of>250 mAh g^(-1) with mid-voltage of 2.6 V at 20 mA g^(-1).Moreover,a highly reversible capacity of around 95 mAh g^(-1) is achieved at 125 mA g^(-1) and maintained for 900 cycles,demonstrating its excellent cycling stability.The mechanism of this highly reversible conversion reaction is further investigated by nuclear magnetic resonance spectra,X-ray diffraction,and transmission electron microscopy studies.According to the analyses,the C-F bond in the cycled material is different from that in the pristine state,which presents relatively higher reversibility.This finding offers important insights for further improving the performance of the CF_x.This work not only demonstrates the CF_x as a high performance cathode for PBs,but also paves a new avenue of exploring conversion-type cathodes for high energy density PBs. 展开更多
关键词 Potassium batteries Carbon fluoride NMR spectroscopy Conversion reaction Cathode
下载PDF
Phosphonium-Based Ionic Thermally Activated Delayed Fluorescence Emitters for High-Performance Partially Solution-Processed Organic Light-Emitting Diodes
3
作者 Xu-Lin Chen Xiao-Dong Tao +5 位作者 Ya-Shu Wang Zhuangzhuang Wei Lingyi Meng Dong-Hai Zhang Fu-Lin Lin can-zhong lu 《CCS Chemistry》 CAS CSCD 2023年第3期589-597,共9页
Ionic thermally activated delayed fluorescence(TADF)emitters are rarely investigated due to their poor photoluminescence and electroluminescence performance.Herein,highly efficient ionic TADF emitters with charged do... Ionic thermally activated delayed fluorescence(TADF)emitters are rarely investigated due to their poor photoluminescence and electroluminescence performance.Herein,highly efficient ionic TADF emitters with charged donor–acceptor(D–A^(+))and D–A^(+)–D architectures are designed,innovatively based on the phosphonium cation electron acceptor.The symmetric D–A^(+)–D compound in doped film exhibits a high photoluminescence quantum yield of 0.91 and a short emission lifetime of 1.43 microseconds.Partially solution-processed organic lightemitting diodes based on these ionic TADF emitters achieve a maximum external quantum efficiency(EQE)of 18.3%and a peak luminance of 14,532 candelas per square meter(cd/m^(2))and show a small efficiency roll-off of 7.1%(EQE=17%)at a practical high luminance of 1000 cd/m^(2).These results demonstrate the high potential of phosphonium cations as promising electron acceptors to construct TADF emitters for high-performance electroluminescence devices.The current study opens up an appealing way for future exploitation of high-efficiency ionic TADF materials. 展开更多
关键词 cation acceptor charge transfer PHOSPHONIUM ionic emitter thermally activated delayed fluorescence partially solution-processed host-guest organic light-emitting diode efficiency roll-off
原文传递
Synergic catalysis of W and Ni originating from substitution of trivacant phosphotungstate for the selective oxidation of aniline to azoxybenzene
4
作者 Sheng Cai Xiao-Yuan Wu +2 位作者 Weiming Wu Sa-Sa Wang can-zhong lu 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第2期558-563,共6页
Partial substitution of polyoxometalate(POM)is an efficient route to modulate the catalytic property of maternal POM.In this work,a new Keggin type POM involving{Ni 6}cluster,{[Ni(H_(2) O)_(2)(Dach)_(2)][Ni(Dach)_(2)]... Partial substitution of polyoxometalate(POM)is an efficient route to modulate the catalytic property of maternal POM.In this work,a new Keggin type POM involving{Ni 6}cluster,{[Ni(H_(2) O)_(2)(Dach)_(2)][Ni(Dach)_(2)]_(2)}{[Ni_(6)Cl(μ-OH)_(3)(H_(2) O)(Dach)_(3)(WO_(4))(PW9 O_(3)_(4))][Ni_(6)(μ-OH)_(3)(H_(2) O)_(2)(Dach)_(3)(WO_(4))(PW9 O_(3)_(4))]}Cl·27H_(2) O,(1,Dach=1,2-diaminocyclohexane)was synthesized.Compounds 1 shows excellent catalytic performance in the selective oxidation of aniline to azoxybenzene(AOB)in water.The apparently different results from that with the matrix{PW 9 O_(3)_(4)}({PW9})suggest the successful regulation of the catalytic property of{PW9}by the introduction of the{Ni6}cluster into the skeleton.The experimental results indicate that the highlighted performance of 1 is contributed by the synergy of W and Ni sites,which are respectively responsible for the oxidation and condensation steps in the production of AOB.The good selectivity to AOB is essentially attributed to the effective modulation of the reaction rates of oxidation and condensation steps by W and Ni sites,respectively. 展开更多
关键词 POLYOXOMETALATE {Ni6}cluster Modulated catalytic property Aniline oxidation AZOXYBENZENE
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部