期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Effects of diamond particle size on microstructure and properties of diamond/Al-12Si composites prepared by vacuum-assisted pressure infiltration
1
作者 Jia-ping Fu can-xu zhou +1 位作者 Guo-fa Mi Yuan Liu 《China Foundry》 SCIE EI CAS CSCD 2024年第4期360-368,共9页
Diamond/aluminium composites have attracted attention in the field of thermal management of electronic packaging for their excellent properties.In order to solve the interfacial problem between diamond and aluminium,a... Diamond/aluminium composites have attracted attention in the field of thermal management of electronic packaging for their excellent properties.In order to solve the interfacial problem between diamond and aluminium,a novel process combining pressure infiltration with vacuum-assisted technology was proposed to prepare diamond/aluminum composites.The effect of diamond particle size on the microstructure and properties of the diamond/Al-12Si composites was investigated.The results show that the diamond/Al-12Si composites exhibit high relative density and a uniform microstructure.Both thermal conductivity and coefficient of thermal expansion increase with increasing particle size,while the bending strength exhibits the opposite trend.When the average diamond particle size increases from 45μm to 425μm,the thermal conductivity of the composites increases from 455 W·m^(-1)·K^(-1)to 713 W·m^(-1)·K^(-1)and the coefficient of thermal expansion increases from 4.97×10^(-6)K^(-1)to 6.72×10^(-6)K^(-1),while the bending strength decreases from 353 MPa to 246 MPa.This research demonstrates that high-quality composites can be prepared by the vacuum-assisted pressure infiltration process and the thermal conductivity of the composites can be effectively improved by increasing the diamond particle size. 展开更多
关键词 diamond/aluminum composites thermal conductivity electronic packaging vacuum-assisted pressure infiltration
下载PDF
铝−共晶镓铟锡复合材料水解制氢
2
作者 梁刚强 刘源 +2 位作者 陈鹏飞 周灿旭 万坦 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2023年第9期2751-2760,共10页
提出一种利用铝和液态金属共晶镓铟锡(eGIS)持续产生氢气的新方法。以带有盲孔的圆柱体铝作为盛放液态金属的容器,通过水解释放氢气,而以eGIS作为触发反应的窗口,促进反应的进行。同时,对半固态Al−eGIS复合材料的显微组织、水解演化和... 提出一种利用铝和液态金属共晶镓铟锡(eGIS)持续产生氢气的新方法。以带有盲孔的圆柱体铝作为盛放液态金属的容器,通过水解释放氢气,而以eGIS作为触发反应的窗口,促进反应的进行。同时,对半固态Al−eGIS复合材料的显微组织、水解演化和产氢性能进行研究。结果表明,当eGIS沿晶界扩散到多晶铝中时,液态金属发生脆化现象,提高了水解过程中复合材料的反应活性,同时观察到In3Sn和InSn4第二相的形成,其有助于加快铝的水解。此外,Al−10wt.%eGIS和Al−20wt.%eGIS复合材料的水解转化率接近100%。样品应用于质子交换膜燃料进行性能测量,在0.54 W输出功率下稳定供电110 min。 展开更多
关键词 制氢 水解 铝基复合材料 液态金属
下载PDF
Effect of carbon on high temperature compressive and creep properties of β-stabilized TiA l alloy 被引量:6
3
作者 can-xu zhou Bin LIU +3 位作者 Yong LIU Cong-zhang QIU Hui-zhong LI Yue-hui HE 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第11期2400-2405,共6页
Carbon is an important alloying element in improving high temperature mechanical properties of various metallic materials.The effects of carbon on high temperature mechanical properties of aβ-stabilized Ti?45Al?3Fe?2... Carbon is an important alloying element in improving high temperature mechanical properties of various metallic materials.The effects of carbon on high temperature mechanical properties of aβ-stabilized Ti?45Al?3Fe?2Mo(molar fraction,%)alloy were studied through compressive and creep tests.The results show that the carbon addition(0.5%,molar fraction)obviously enhances the high temperature compressive strength and creep resistance of theβ-stabilized Ti?45Al?3Fe?2Mo alloy.A lot of nano-scaled Ti3AlC carbides precipitate in theβ-stabilized alloy and these carbides pin the dislocations,and greatly increase the high temperature properties.At the same time,the carbon addition decreases the amount of?phase,refines the lamellar spacing,and causes solution strengthening,which also contribute to the improvement of the high temperature properties. 展开更多
关键词 TiAl alloy CARBON precipitation high temperature compression high temperature creep
下载PDF
Fabrication of lotus-type porous Mg−Mn alloys by metal/gas eutectic unidirectional solidification 被引量:2
4
作者 can-xu zhou Yuan LIU +2 位作者 Hua-wei ZHANG Xiang CHEN Yan-xiang LI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第6期1524-1534,共11页
Lotus-type porous Mg–xMn(x=0,1,2 and 3 wt.%)alloys were fabricated by metal/gas eutectic unidirectional solidification(the Gasar process).The effects of Mn addition and the fabrication process on the porosity,pore di... Lotus-type porous Mg–xMn(x=0,1,2 and 3 wt.%)alloys were fabricated by metal/gas eutectic unidirectional solidification(the Gasar process).The effects of Mn addition and the fabrication process on the porosity,pore diameter and microstructure of the porous Mg-Mn alloy were investigated.Mn addition improved the Mn precipitates and increased the porosity and pore diameter.With increasing hydrogen pressure from 0.1 to 0.6 MPa,the overall porosity of the Mg-2wt.%Mn ingot decreased from 55.3%to 38.4%,and the average pore diameter also decreased from 2465 to 312μm.Based on a theoretical model of the change in the porosity with the hydrogen pressure,the calculated results were in good agreement with the experimental results.It is shown that this technique is a promising method to fabricate Gasar Mg–Mn alloys with uniform and controllable pore structure. 展开更多
关键词 porous material Mg-Mn alloy POROSITY Gasar process directional solidification
下载PDF
Fabrication and compressive behavior of open-cell aluminum foams via infiltration casting using spherical CaCl_(2) space-holders
5
作者 Tan Wan Gang-qiang Liang +2 位作者 Zhao-ming Wang can-xu zhou Yuan Liu 《China Foundry》 SCIE CAS 2022年第2期89-98,共10页
The infiltration casting fabrication process based on spherical CaCl_(2) space-holders and the compressive behavior including the mechanical performance and energy absorption capacity of open-cell aluminum foams were ... The infiltration casting fabrication process based on spherical CaCl_(2) space-holders and the compressive behavior including the mechanical performance and energy absorption capacity of open-cell aluminum foams were investigated.Open-cell aluminum foams with different porosities in the range of 63.1%to 87.3%can be fabricated by adjusting compression ratios of CaCl_(2) preforms prepared by precision hot-pressing.The compression tests show that a strain-hardening phenomenon always occurs especially for open-cell aluminum foam with low porosity,resulting in the inclining stress-strain curve in the plateau region.The energy absorption capacity of open-cell aluminum foam decreases with increasing porosity when compared at the same strain.However,when compared at a given stress,each foam can absorb the maximal energy among the five foams in a special stress range.Additionally,open-cell aluminum foam possesses the maximum energy absorption efficiency at its optimum operating stress.At this stress condition,the foam can absorb the highest energy compared with other foams at the same stress point.The optimum operating stress and the corresponding maximal energy absorption decrease with increasing the porosity.The optimum operating stress for energy absorption can also be determined similarly when taking into consideration of the lightweight extent of foams. 展开更多
关键词 open-cell aluminum foam CaCl_(2)space-holder infiltration casting energy absorption
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部