Leptosphaeria maculans, a pathogen of Brassica napus, is unable to invade most wild-type accessions of Arabidopsis thaliana, although several mutants are susceptible. The infection pathway of L. maculans via a non-inv...Leptosphaeria maculans, a pathogen of Brassica napus, is unable to invade most wild-type accessions of Arabidopsis thaliana, although several mutants are susceptible. The infection pathway of L. maculans via a non-invasive inoculation method on A. thaliana Imsl (undefined), pmr4-1 (defective in callose deposition), and pen1-1 and pen2-1 (defective in non-host responses to several pathogens) mutants is described. On wild types Col-0 and Ler-0, hyphae are generally arrested at stomatal apertures. A T-DNA insertional mutant of L. maculans (A22) that penetrates stomatal apertures of Col-0 and Ler-0 five to seven times more often than the wild-type isolate is described. The higher penetration frequency of isolate A22 is associated with an increased hypersensitive response, which includes callose deposition. Com- plementation analysis showed that the phenotype of this isolate is due to T-DNA insertion in an intronless gene denoted as ipa (increased penetration on A rabidopsis). This gene is predicted to encode a protein of 702 amino acids with best matches to hypothetical proteins in other filamentous ascomycetes. The ipa gene is expressed in the wild-type isolate at low levels in culture and during infection of A. thaliana and B. napus.展开更多
文摘Leptosphaeria maculans, a pathogen of Brassica napus, is unable to invade most wild-type accessions of Arabidopsis thaliana, although several mutants are susceptible. The infection pathway of L. maculans via a non-invasive inoculation method on A. thaliana Imsl (undefined), pmr4-1 (defective in callose deposition), and pen1-1 and pen2-1 (defective in non-host responses to several pathogens) mutants is described. On wild types Col-0 and Ler-0, hyphae are generally arrested at stomatal apertures. A T-DNA insertional mutant of L. maculans (A22) that penetrates stomatal apertures of Col-0 and Ler-0 five to seven times more often than the wild-type isolate is described. The higher penetration frequency of isolate A22 is associated with an increased hypersensitive response, which includes callose deposition. Com- plementation analysis showed that the phenotype of this isolate is due to T-DNA insertion in an intronless gene denoted as ipa (increased penetration on A rabidopsis). This gene is predicted to encode a protein of 702 amino acids with best matches to hypothetical proteins in other filamentous ascomycetes. The ipa gene is expressed in the wild-type isolate at low levels in culture and during infection of A. thaliana and B. napus.