期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Phylogenetically Distinct Cellulose Synthase Genes Support Secondary Wall Thickening in Arabidopsis Shoot Trichomes and Cotton Fiber 被引量:4
1
作者 Lissete Betancur Bir Singh +4 位作者 Ryan A.Rapp Jonathan F.Wendel M. David Marks Alison W.Roberts candace h.haigler 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2010年第2期205-220,共16页
Through exploring potential analogies between cotton seed trichomes (or cotton fiber) and arabidopsis shoot trichomes we discovered that CesAs from either the primary or secondary wall phylogenetic clades can suppor... Through exploring potential analogies between cotton seed trichomes (or cotton fiber) and arabidopsis shoot trichomes we discovered that CesAs from either the primary or secondary wall phylogenetic clades can support secondary wall thickening. CesA genes that typically support primary wall synthesis, AtCesA 1,2,3,5, and 6, underpin expansion and secondary wall thickening of arabidopsis shoot trichomes. In contrast, apparent orthologs of CesA genes that support secondary wall synthesis in arabidopsis xylem, AtCesA4,7, and 8, are up-regulated for cotton fiber secondary wall deposition. These conclusions arose from: (a) analyzing the expression of CesA genes in arabidopsis shoot trichomes; (b) observing birefringent secondary walls in arabidopsis shoot trichomes with mutations in AtCesA4, 7, or 8; (c) assaying up-regulated genes during different stages of cotton fiber development; and (d) comparing genes that were co.expressed with primary or secondary wall CesAs in arabidopsis with genes up- regulated in arabidopsis trichomes, arabidopsis secondary xylem, or cotton fiber during primary or secondary wall deposition. Cumulatively, the data show that: (a) the xylem of arabidopsis provides the best model for secondary wall cellulose synthesis in cotton fiber; and (b) CesA genes within a "cell wall toolbox" are used in diverse ways for the construction of particular specialized cell walls. 展开更多
关键词 Phylogenetically Distinct Cellulose Synthase Genes Support Secondary Wall Thickening in Arabidopsis Shoot Trichomes and Cotton Fiber GUS
原文传递
Cellulose synthase ‘class specific regions’ are intrinsically disordered and functionally undifferentiated
2
作者 Tess R.Scavuzzo-Duggan Arielle M.Chaves +5 位作者 Abhishek Singh Latsavongsakda Sethaphong Erin Slabaugh Yaroslava G.Yingling candace h.haigler Alison W.Roberts 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2018年第6期481-497,共17页
Cellulose synthases (CESAs) are glycosyltransferases that catalyze formation of cellulose microfibrils in plant cell walls. Seed plant CESA isoforms cluster in six phylogenetic clades, whose non-interchangeable memb... Cellulose synthases (CESAs) are glycosyltransferases that catalyze formation of cellulose microfibrils in plant cell walls. Seed plant CESA isoforms cluster in six phylogenetic clades, whose non-interchangeable members play distinct roles within cellulose synthesis complexes (CSCs). A 'class specific region' (CSR), with higher sequence similarity within versus between functional CESA classes, has been suggested to contribute to specific activities or interactions of different isoforms. We investigated CESA isoform specificity in the moss, Physcomitrella patens (Hedw.) B. S. G. to gain evolutionary insights into CESA structure/function relationships. Like seed plants, P. patens has oligomeric rosette-type CSCs, but the PpCESAs diverged independently and form a separate CESA clade. We showed that P. patens has two functionally distinct CESAs classes, based on the ability to complement the gametophore-negative phenotype of a ppcesa5 knockout line. Thus, non-interchangeable CESA classes evolved separately in mosses and seed plants. However, testing of chimeric moss CESA genes for complementation demonstrated that functional classspecificity is not determined by the CSR. Sequence analysis and computational modeling showed that the CSR is intrinsically disordered and contains predicted molecular recognition features, consistent with a possible role in CESA oligomerization and explaining the evolution of class-specific sequences without selection for class-specific function. 展开更多
关键词 Uwe Sonnewald Friedrich-Alexander University GERMANY
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部