Well-differentiated thyroid carcinoma(WDTC,including papillary thyroid carcinoma and follicular thyroid carcinoma)are fairly slow-growing tumors with an overall low mortality due to the efficacy of combinatory surgery...Well-differentiated thyroid carcinoma(WDTC,including papillary thyroid carcinoma and follicular thyroid carcinoma)are fairly slow-growing tumors with an overall low mortality due to the efficacy of combinatory surgery and postoperative radioiodine therapy.Subsets of WDTCs may dedifferentiate into poorly differentiated thyroid carcinoma(PDTC)and anaplastic thyroid carcinoma(ATC),of which especially the latter has an exceptionally poor patient outcome.The underlying genetics responsible for this tumor progression is only partly understood,and is complicated by the fact that subgroups of ATCs are thought to arise de novo without a demonstrable,pre-existing WDTC.Even so,recent advances using next generation sequencing(NGS)techniques have identified a genetic link between WDTCs and ATCs,suggesting a step-wise accumulation of mutations driving the loss of differentiation for most cases.In this Commentary,recent findings from an NGS study on synchronous FTC,PDTC,and ATC tumor components from the same patient are highlighted.By using whole-genome data,clonality analyses identified a chief ancestral clone carrying mutations in TP53-associated signaling networks regulating genes involved in DNA repair,with sub-clones in each tumor component that were identified also in the less differentiated,neighboring tumor.Moreover,mutational signatures suggested a general mismatch repair(MMR)deficiency along with microsatellite instability.These findings support the chained progression model of dedifferentiation in thyroid cancer,and pinpoint a central role for defective DNA repair.Since effective treatment modalities for ATCs are urgently needed,studies regarding therapeutic agents specifically targeting defective MMR in dedifferentiated thyroid carcinoma could be pursued.展开更多
基金This work was supported by the Swedish Cancer Society(Junior Clinical Investigator Award).
文摘Well-differentiated thyroid carcinoma(WDTC,including papillary thyroid carcinoma and follicular thyroid carcinoma)are fairly slow-growing tumors with an overall low mortality due to the efficacy of combinatory surgery and postoperative radioiodine therapy.Subsets of WDTCs may dedifferentiate into poorly differentiated thyroid carcinoma(PDTC)and anaplastic thyroid carcinoma(ATC),of which especially the latter has an exceptionally poor patient outcome.The underlying genetics responsible for this tumor progression is only partly understood,and is complicated by the fact that subgroups of ATCs are thought to arise de novo without a demonstrable,pre-existing WDTC.Even so,recent advances using next generation sequencing(NGS)techniques have identified a genetic link between WDTCs and ATCs,suggesting a step-wise accumulation of mutations driving the loss of differentiation for most cases.In this Commentary,recent findings from an NGS study on synchronous FTC,PDTC,and ATC tumor components from the same patient are highlighted.By using whole-genome data,clonality analyses identified a chief ancestral clone carrying mutations in TP53-associated signaling networks regulating genes involved in DNA repair,with sub-clones in each tumor component that were identified also in the less differentiated,neighboring tumor.Moreover,mutational signatures suggested a general mismatch repair(MMR)deficiency along with microsatellite instability.These findings support the chained progression model of dedifferentiation in thyroid cancer,and pinpoint a central role for defective DNA repair.Since effective treatment modalities for ATCs are urgently needed,studies regarding therapeutic agents specifically targeting defective MMR in dedifferentiated thyroid carcinoma could be pursued.