A continuous random variable is expanded as a sum of a sequence of uncorrelated random variables. These variables are principal dimensions in continuous scaling on a distance function, as an extension of classic scali...A continuous random variable is expanded as a sum of a sequence of uncorrelated random variables. These variables are principal dimensions in continuous scaling on a distance function, as an extension of classic scaling on a distance matrix. For a particular distance, these dimensions are principal components. Then some properties are studied and an inequality is obtained. Diagonal expansions are considered from the same continuous scaling point of view, by means of the chi-square distance. The geometric dimension of a bivariate distribution is defined and illustrated with copulas. It is shown that the dimension can have the power of continuum.展开更多
We present a unified approach to describing and linking several methods for representing categorical data in a contingency table. These methods include: correspondence analysis, Hellinger distance analysis, the log-ra...We present a unified approach to describing and linking several methods for representing categorical data in a contingency table. These methods include: correspondence analysis, Hellinger distance analysis, the log-ratio alternative, which is appropriate for compositional data, and the non-symmetrical correspondence analysis. We also present two solutions working with cummulative frequencies.展开更多
文摘A continuous random variable is expanded as a sum of a sequence of uncorrelated random variables. These variables are principal dimensions in continuous scaling on a distance function, as an extension of classic scaling on a distance matrix. For a particular distance, these dimensions are principal components. Then some properties are studied and an inequality is obtained. Diagonal expansions are considered from the same continuous scaling point of view, by means of the chi-square distance. The geometric dimension of a bivariate distribution is defined and illustrated with copulas. It is shown that the dimension can have the power of continuum.
文摘We present a unified approach to describing and linking several methods for representing categorical data in a contingency table. These methods include: correspondence analysis, Hellinger distance analysis, the log-ratio alternative, which is appropriate for compositional data, and the non-symmetrical correspondence analysis. We also present two solutions working with cummulative frequencies.