期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
The westward lithospheric drift,its role on the subduction and transform zones surrounding Americas:Andean to cordilleran orogenic types cyclicity 被引量:2
1
作者 Eugenio Aragon Fernando D'Eramo +7 位作者 Marco Cuffaro carlo doglioni Eleonora Ficini Lucio Pinotti Silvina Nacif Manuel Demartis Irene Hernando Tomas Fuentes 《Geoscience Frontiers》 SCIE CAS CSCD 2020年第4期1219-1229,共11页
We investigate the effect of the westerly rotation of the lithosphere on the active margins that surround the Americas and find good correlations between the inferred easterly-directed mantle counterflow and the main ... We investigate the effect of the westerly rotation of the lithosphere on the active margins that surround the Americas and find good correlations between the inferred easterly-directed mantle counterflow and the main structural grain and kinematics of the Andes and Sandwich arc slabs.In the Andes,the subduction zone is shallow and with low dip,because the mantle flow sustains the slab;the subduction hinge converges relative to the upper plate and generates an uplifting doubly verging orogen.The Sandwich Arc is generated by a westerly-directed SAM(South American) plate subduction where the eastward mantle flow is steepening and retreating the subduction zone.In this context,the slab hinge is retreating relative to the upper plate,generating the backarc basin and a low bathymetry single-verging accretionary prism.In Central America,the Caribbean plate presents a more complex scenario:(a) To the East,the Antilles Arc is generated by westerly directed subduction of the SAM plate,where the eastward mantle flow is steepening and retreating the subduction zone.(b) To the West,the Middle America Trench and Arc are generated by the easterly-directed subduction of the Cocos plate,where the shallow subduction caused by eastward mantle flow in its northern segment gradually steepens to the southern segment as it is infered by the preexisting westerly-directed subduction of the Caribbean Plateau.In the frame of the westerly lithospheric flow,the subduction of a divergent active ridge plays the role of introducing a change in the oceanic/continental plate’s convergence angle,such as in NAM(North American)plate with the collision with the Pacific/Farallon active ridge in the Neogene(Cordilleran orogenic type scenario).The easterly mantle drift sustains strong plate coupling along NAM,showing at Juan de Fuca easterly subducting microplate that the subduction hinge advances relative to the upper plate.This lower/upper plate convergence coupling also applies along strike to the neighbor continental strike slip fault systems where subduction was terminated(San Andreas and Queen Charlotte).The lower/upper plate convergence coupling enables the capture of the continental plate ribbons of Baja California and Yakutat terrane by the Pacific oceanic plate,transporting them along the strike slip fault systems as para-autochthonous terranes.This Cordilleran orogenic type scenario,is also recorded in SAM following the collision with the Aluk/Farallon active ridge in the Paleogene,segmenting SAM margin into the eastwardly subducting Tupac Amaru microplate intercalated between the proto-LiquineOfqui and Atacama strike slip fault systems,where subduction was terminated and para-autochthonous terranes transported.In the Neogene,the convergence of Nazca plate with respect to SAM reinstalls subduction and the present Andean orogenic type scenario. 展开更多
关键词 Lithospheric drift Converging hinge Diverging hinge Slab rollbakc TERRANES
下载PDF
Tectonically asymmetric Earth:From net rotation to polarized westward drift of the lithosphere 被引量:5
2
作者 carlo doglioni Eugenio Carminati +3 位作者 Mattia Crespi Marco Cuffaro Mattia Penati Federica Riguzzi 《Geoscience Frontiers》 SCIE CAS CSCD 2015年第3期401-418,共18页
The possibility of a net rotation of the lithosphere with respect to the mantle is generally overlooked since it depends on the adopted mantle reference frames, which are arbitrary. We review the geological and geophy... The possibility of a net rotation of the lithosphere with respect to the mantle is generally overlooked since it depends on the adopted mantle reference frames, which are arbitrary. We review the geological and geophysical signatures of plate boundaries, and show that they are markedly asymmetric worldwide. Then we compare available reference frames of plate motions relative to the mantle and discuss which is at best able to fit global tectonic data. Different assumptions about the depths of hotspot sources (below or within the asthenosphere, which decouples the lithosphere from the deep mantle) predict different rates of net rotation of the lithosphere relative to the mantle. The widely used no-net-rotation (NNR) reference frame, and low (〈0.2°-0.4°/Ma) net rotation rates (deep hotspots source) predict an average net rotation in which some plates move eastward relative to the mantle (e.g., Nazca). With fast (〉1°/Ma) net rotation (shallow hotspots source), all plates, albeit at different velocity, move westerly along a curved trajectory, with a tectonic equator tilted about 30° relative to the geographic equator. This is consistent with the observed global tectonic asymmetries. 展开更多
关键词 Asymmetric plate tectonics Plate motions Westward drift Mantle convection
下载PDF
Asymmetric Atlantic continental margins
3
作者 Adriano Vangone carlo doglioni 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第5期298-308,共11页
We analyze the gross crustal structure of the Atlantic Ocean passive continental margins from north to the south,comparing eleven sections of the conjugate margins.As a general result,the western margins show a sharpe... We analyze the gross crustal structure of the Atlantic Ocean passive continental margins from north to the south,comparing eleven sections of the conjugate margins.As a general result,the western margins show a sharper continental-ocean transition with respect to the eastern margins that rather show a wider stretched and thinner margin.The Moho is in average about 5.7±1dipping toward the interior of the continent on the western side,whereas it is about 2.7±1in the eastern margins.Moreover,the stretched continental crust is on average 244 km wide on the western side,whereas it is up to about 439 km on the eastern side of the Atlantic.This systematic asymmetry reflects the early stages of the diachronous Mesozoic to Cenozoic continental rifting,which is inferred as the result of a polarized westward motion of both western and eastern plates,being Greenland,Northern and Southern Americas plates moving westward faster with respect to Scandinavia,Europe and Africa,relative to the underlying mantle. 展开更多
关键词 Passive continental margin Asymmetric rift Moho dip Continental-ocean transition Westward drift of the lithosphere
下载PDF
Why did life develop on the surface of the Earth in the Cambrian?
4
作者 carlo doglioni Johannes Pignatti Max Coleman 《Geoscience Frontiers》 SCIE CAS CSCD 2016年第6期865-873,共9页
Life was limited for most of Earth's history, remaining at a primitive stage and mostly marine until about 0.55 Ga. In the Paleozoic, life eventually exploded and colonized the continental realm. Why had there been s... Life was limited for most of Earth's history, remaining at a primitive stage and mostly marine until about 0.55 Ga. In the Paleozoic, life eventually exploded and colonized the continental realm. Why had there been such a long period of delayed evolution of life? Early life was dominated by Archaea and Bacteria, which can survive ionizing radiation better than other organisms. The magnetic field preserves the atmosphere, which is the main shield of UV radiation. We explore the hypothesis that the Cambrian explosion of life could have been enabled by the increase of the magnetic field dipole intensity due to the solidification of the inner core, caused by the cooling of the Earth, and the concomitant decrease with time of the high-energy solar flux since the birth of the solar system. Therefore, the two phenomena could be responsible for the growth and thickening of the atmosphere and the development of land surface life. 展开更多
关键词 Origin of lifeInner core solidificationSolar ionizing radiations
下载PDF
Tidal drag and westward drift of the lithosphere
5
作者 Vincenzo Nesi Oscar Bruno +2 位作者 Davide Zaccagnino Corrado Mascia carlo doglioni 《Geoscience Frontiers》 SCIE CAS CSCD 2023年第6期102-116,共15页
Tidal forces are generally neglected in the discussion about the mechanisms driving plate tectonics despite a worldwide geodynamic asymmetry also observed at subduction and rift zones.The tidal drag could theoreticall... Tidal forces are generally neglected in the discussion about the mechanisms driving plate tectonics despite a worldwide geodynamic asymmetry also observed at subduction and rift zones.The tidal drag could theoretically explain the westerly shift of the lithosphere relative to the underlying mantle.Notwithstanding,viscosity in the asthenosphere is apparently too high to allow mechanical decoupling produced by tidal forces.Here,we propose a model for global scale geodynamics accompanied by numerical simulations of the tidal interaction of the Earth with the Moon and the Sun.We provide for the first time a theoretical proof that the tidal drag can produce a westerly motion of the lithosphere,also compatible with the slowing of the Earth’s rotational spin.Our results suggest a westerly rotation of the lithosphere with a lower bound ofω≈(0.1-0.2)°/Myr in the presence of a basal effective shear viscosityη≈10^(16)Pa-s,but it may rise toω>1°/Myr with a viscosity ofη≈≤3×10^(14)Pa-s within the Low-Velocity Zone(LVZ)atop the asthenosphere.This faster velocity would be more compatible with the mainstream of plate motion and the global asymmetry at plate boundaries.Based on these computations,we suggest that the super-adiabatic asthenosphere,being vigorously convecting,may further reduce the viscous coupling within the LVZ Therefore,the combination of solid Earth tides,ultra-low viscosity LVZ and asthenospheric polarized small-scale convection may mechanically satisfy the large-scale decoupling of the lithosphere relative to the underlying mantle.Relative plate motions are explained because of lateral viscosity heterogeneities at the base of the lithosphere,which determine variable lithosphere-asthenosphere decoupling and plate interactions,hence plate tectonics. 展开更多
关键词 Tidal drag Plate motions Polarized plate tectonics Lithosphere-asthenosphere interaction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部