期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
End-to-end differentiable learning of turbulence models from indirect observations 被引量:2
1
作者 carlos a.michelén strofer Heng Xiao 《Theoretical & Applied Mechanics Letters》 CSCD 2021年第4期205-212,共8页
The emerging push of the differentiable programming paradigm in scientific computing is conducive to training deep learning turbulence models using indirect observations.This paper demonstrates the viability of this a... The emerging push of the differentiable programming paradigm in scientific computing is conducive to training deep learning turbulence models using indirect observations.This paper demonstrates the viability of this approach and presents an end-to-end differentiable framework for training deep neural networks to learn eddy viscosity models from indirect observations derived from the velocity and pressure fields.The framework consists of a Reynolds-averaged Navier–Stokes(RANS)solver and a neuralnetwork-represented turbulence model,each accompanied by its derivative computations.For computing the sensitivities of the indirect observations to the Reynolds stress field,we use the continuous adjoint equations for the RANS equations,while the gradient of the neural network is obtained via its built-in automatic differentiation capability.We demonstrate the ability of this approach to learn the true underlying turbulence closure when one exists by training models using synthetic velocity data from linear and nonlinear closures.We also train a linear eddy viscosity model using synthetic velocity measurements from direct numerical simulations of the Navier–Stokes equations for which no true underlying linear closure exists.The trained deep-neural-network turbulence model showed predictive capability on similar flows. 展开更多
关键词 Turbulence modeling Machine learning Adjoint solver Reynolds-averaged Navier-Stokes equations
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部