The surface irrigation systems are the most used not just in Brazil, but in the whole world mainly due to the economy of energy and its operation easiness; however, these systems present low levels of performance, usu...The surface irrigation systems are the most used not just in Brazil, but in the whole world mainly due to the economy of energy and its operation easiness; however, these systems present low levels of performance, usually, as a consequence of inadequate design and management. Thus, the objective of this research was to develop a tool capable to make possible the simulation and optimization of the continuous flow furrow irrigation performance, making successive simulations of the advance phase and respective prognostics of the performance parameters of the irrigation system. The proposed model is denominated SASIS, "Software Applied to Simulation of the Surface Irrigation", and had its validation tested for different field conditions. In this paper, the simulation and the optimization of the furrow irrigation by the model SASIS are evaluated regarding to the spatial (4) and temporal (0) weighted factors, which account for the nonlinear variation in the surface and subsurface flow profiles. The analysis of the sensitivity of simulation of the advance phase in the irrigation identified ranges of combinations between spatial and temporal weighted factors of the surface and subsurface flow profiles, resulted in acceptable discrepancies between simulated and measured advance time. Also it was verified that conjugated effect of these weighted factors on the simulation of the advance phase was greater than the effect of the temporal weighted factor. The model presents effective mechanisms in the accomplishment of countless simulations, in a discharge strip understood between the minimum and the maximum allowable values, aiming to determine the relationship between discharge and water application efficiency, deep percolation and runoff rates, and consequently to optimize the performance of the furrow irrigation systems with continuous flow.展开更多
文摘The surface irrigation systems are the most used not just in Brazil, but in the whole world mainly due to the economy of energy and its operation easiness; however, these systems present low levels of performance, usually, as a consequence of inadequate design and management. Thus, the objective of this research was to develop a tool capable to make possible the simulation and optimization of the continuous flow furrow irrigation performance, making successive simulations of the advance phase and respective prognostics of the performance parameters of the irrigation system. The proposed model is denominated SASIS, "Software Applied to Simulation of the Surface Irrigation", and had its validation tested for different field conditions. In this paper, the simulation and the optimization of the furrow irrigation by the model SASIS are evaluated regarding to the spatial (4) and temporal (0) weighted factors, which account for the nonlinear variation in the surface and subsurface flow profiles. The analysis of the sensitivity of simulation of the advance phase in the irrigation identified ranges of combinations between spatial and temporal weighted factors of the surface and subsurface flow profiles, resulted in acceptable discrepancies between simulated and measured advance time. Also it was verified that conjugated effect of these weighted factors on the simulation of the advance phase was greater than the effect of the temporal weighted factor. The model presents effective mechanisms in the accomplishment of countless simulations, in a discharge strip understood between the minimum and the maximum allowable values, aiming to determine the relationship between discharge and water application efficiency, deep percolation and runoff rates, and consequently to optimize the performance of the furrow irrigation systems with continuous flow.