期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Long-Term Metformin Effect on Endometrial Cancer Development Depending on Glucose Environment <i>In Vitro</i>
1
作者 Amanda Machado Weber carsten lange +2 位作者 Julia Jauckus Thomas Strowitzki Ariane Germeyer 《Open Journal of Obstetrics and Gynecology》 2021年第9期1172-1189,共18页
<strong>Objectives:</strong><span><span><span style="font-family:""><strong> </strong></span></span></span><span style="font-fami... <strong>Objectives:</strong><span><span><span style="font-family:""><strong> </strong></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">Hyperinsulinemia as well as prolonged and elevated estrogen exposure are considered as risk factors for endometrial cancer (EC) development.</span></span></span></span><span><span><span><span style="font-family:""> </span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">Metformin, an anti-hyperglycemic and insulin-sensitizing biguanide, displayed anti-proliferative effects in recent studies. </span></span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">In the present study, the effects of long-term exposure of endometrial cancer cells to low and moderate concentrations of metformin on cell viability, proliferation, clonogenicity and migration were investigated under different metabolic conditions. </span><b><span style="font-family:Verdana;">Study Design:</span></b></span></span></span><span><span><b><span style="font-family:""> </span></b></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">EC cell lines HEC-1A and Ishikawa were cultured under normo</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">- </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">(NG, 5.5 mM) or hyperglycemic (HG, 17.0 mM) conditions and treated with metformin (0.01</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> - </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">5.0 mM) in the presence of</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><i><span style="font-family:Verdana;">β</span></i></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">-estradiol (E2) for 7 d. </span><b><span style="font-family:Verdana;">Results:</span></b></span></span></span><span><span><b><span style="font-family:""> </span></b></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">A concentration-dependent decrease of cellular viability was observed in the MTT and ATP assays after metformin treatment. IC</span><sub><span style="font-family:Verdana;">50</span></sub><span style="font-family:Verdana;"> values were between 0.7</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> - </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">3.7 mM (NG) and 3.0</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> - </span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">18.3 mM (HG), respectively. A protective effect of glucose on cellular viability was detected only in the ATP assay. Furthermore, </span><span style="font-family:Verdana;">metformin (0.5</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> - </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">5.0 mM) led to a significant decrease in proliferation by 12</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">% - </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">55% (NG). However, a decreased proliferation rate was only induced at 5.0 mM metformin (40%) in the presence of high glucose levels in HEC-1A cells, indicating a glucose-related resistance to anti-proliferative metformin effects, which</span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">—</span><span style="font-family:Verdana;">to a lesser extent</span><span style="font-family:Verdana;">—</span><span style="font-family:Verdana;">was also observed in Ishikawa cells. Metformin treatment also caused concentration-dependent effects on clonogenicity and decreased the number and size of colonies. In HEC-1A cells, metformin (0.5</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> - </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">5.0 mM) reduced the colony formation by 44</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">% - </span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">80% (NG) and </span><span style="font-family:Verdana;">29</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">% - </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">81% (HG), respectively. Slightly higher metformin concentrations (1.</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">0</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> - </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">5.0 mM) were necessary in Ishikawa cells to reduce clonogenicity by 36</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">% - </span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">86% independent of glucose levels. An investigation of migration in the wound healing assay revealed that the % wound closure decreased with increasing metformin concentrations, but independent of glucose levels. After treatment with 5.0 mM metformin, migration was significantly reduced in both cell lines. </span><b><span style="font-family:Verdana;">Conclusion: </span></b><span style="font-family:Verdana;">Our </span><i><span style="font-family:Verdana;">in vitro</span></i><span style="font-family:Verdana;"> findings support the hypothesis that metformin has a direct effect on endometrial cancer cell lines and reflects the importance of the local glucose environment, suggesting that metformin may be considered as a potential adjuvant agent in endometrial cancer therapy due to its direct and indirect effects on endometrial development.</span></span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">However, further studies are necessary that confirm the relevance of our data for clinical applications.</span></span></span> 展开更多
关键词 METFORMIN Endometrial Cancer PROLIFERATION Migration Clonogenicity
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部