We report the isolation of a cold-adapted bacterium belonging to the genus Janthinobacterium (named AU 11), from a water sample collected in Lake Uruguay (King George Island, South Shetlands). AUI 1 (growth betwe...We report the isolation of a cold-adapted bacterium belonging to the genus Janthinobacterium (named AU 11), from a water sample collected in Lake Uruguay (King George Island, South Shetlands). AUI 1 (growth between 4℃ and 30℃) produces a single cold-active extracellular protease (ExPAU11), differentially expressed at low temperature. ExPAU11 was identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-ToF MS) as an alkaline metallo-protease (70% coverage with an extracellular protease of Janthinobacterium sp. PI12), and by protease-inhibitor screening identified as a serine-protease. To the best of our knowledge this is the first experimental evidence of a cold-active extracellular protease produced by Janthinobacterium. Furthermore, we identified a serine-protease gene (named JSP8A) showing 60% identity (98% query coverage) to subtilisin peptidases belonging to the $8 family (S8A subfamily) of many cyanobacteria. A phylogenetic analysis of the JSP8A protease, along with related bacterial protein sequences, confirms that JSP8A clusters with S8A subtilisin sequences from different cyanobacteria, and is clearly separated from SSA bacterial sequences of other phyla (including its own). An analysis of the genomic organization around JSP8A suggests that this protease gene was acquired in an event that duplicated a racemase gene involved in transforming L- to D-amino acids. Our results suggest that AU11 probably acquired this subtilisin-like protease gene by horizontal gene transfer (HGT) from a cyanobacterittrn. We discuss the relevance of a bacterial protease-HGT in the Antarctic environment in light of this hypothesis.展开更多
基金supported by PEDECIBA (Programa De Desarrollo de las Ciencias Básicas), Uruguay, and IAU (Instituto Antártico Uruguayo)supported by ANII (Agencia Nacional de Investigación e Innovación)
文摘We report the isolation of a cold-adapted bacterium belonging to the genus Janthinobacterium (named AU 11), from a water sample collected in Lake Uruguay (King George Island, South Shetlands). AUI 1 (growth between 4℃ and 30℃) produces a single cold-active extracellular protease (ExPAU11), differentially expressed at low temperature. ExPAU11 was identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-ToF MS) as an alkaline metallo-protease (70% coverage with an extracellular protease of Janthinobacterium sp. PI12), and by protease-inhibitor screening identified as a serine-protease. To the best of our knowledge this is the first experimental evidence of a cold-active extracellular protease produced by Janthinobacterium. Furthermore, we identified a serine-protease gene (named JSP8A) showing 60% identity (98% query coverage) to subtilisin peptidases belonging to the $8 family (S8A subfamily) of many cyanobacteria. A phylogenetic analysis of the JSP8A protease, along with related bacterial protein sequences, confirms that JSP8A clusters with S8A subtilisin sequences from different cyanobacteria, and is clearly separated from SSA bacterial sequences of other phyla (including its own). An analysis of the genomic organization around JSP8A suggests that this protease gene was acquired in an event that duplicated a racemase gene involved in transforming L- to D-amino acids. Our results suggest that AU11 probably acquired this subtilisin-like protease gene by horizontal gene transfer (HGT) from a cyanobacterittrn. We discuss the relevance of a bacterial protease-HGT in the Antarctic environment in light of this hypothesis.