期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
An Automated Ultrasonic NDT System for In-Situ Inspection of Wind Turbine Blades
1
作者 Tat-Hean Gan Guoliang Ye +3 位作者 Ben Neal Alex Boot Vassilios Kappatos cem selcuk 《Journal of Mechanics Engineering and Automation》 2014年第10期781-788,共8页
It is crucial to maintain wind turbine blades regularly, due to the high stress leading to defects or damage. Conventional methods require shipping the blades to a workshop for off-site inspection, which is extremely ... It is crucial to maintain wind turbine blades regularly, due to the high stress leading to defects or damage. Conventional methods require shipping the blades to a workshop for off-site inspection, which is extremely time-consuming and very costly. This work investigates the use of pulse-echo ultrasound to detect internal damages in wind turbine blades without the necessity to ship the blades off-site. A prototype 2D ultrasonic NDT (non-destructive testing) system has been developed and optimised for in-situ wind turbine blade inspection. The system is designed to be light weight so it can be easily carried by an inspector onto the wind turbine blade for in-situ inspection. It can be operated in 1D A-scan, 2D C-scan or 3D volume scan. A software system has been developed to control the automated scanning and show the damage areas in a 2D/3D map with different colours so that the inspector can easily identify the defective areas. Experiments on GFRP (glass fibre reinforced plastics) and wind turbine blades (made of GFRP) samples showed that internal defects can be detected. The main advantages of this system are fully automated 2D spatial scanning and the ability to alert the user to the damage of the inspected sample. It is intended to be used for in-situ inspection to save maintenance time and hence considered to be economically beneficial for the wind energy industry. 展开更多
关键词 ULTRASOUND non-destructive testing wind turbine blade glass fibre reinforced plastics defect detection.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部