Recently we developed a technique of ozone/vacuum annealing to continuously change the doping level of the surface of Bi_2Sr_2CaCu_2O_(8+)and measured a nearly whole superconducting dome on one surface by in-situ angl...Recently we developed a technique of ozone/vacuum annealing to continuously change the doping level of the surface of Bi_2Sr_2CaCu_2O_(8+)and measured a nearly whole superconducting dome on one surface by in-situ angle-resolved photoemission spectroscopy [arXiv: 1805.06450]. Here we study the evolution of the electronic structures of Bi_2Sr_2CaCu_2O_(8+)xusing this technique together with tight binding fits. The tight binding parameters are extracted to study their evolution with doping.展开更多
The CoSi family hosts unconventional topological nodes with nonzero Chern numbers.The nontrivial topology is manifested by conspicuous surface Fermi arcs connecting surface projections of the nodes.Here,using angle-re...The CoSi family hosts unconventional topological nodes with nonzero Chern numbers.The nontrivial topology is manifested by conspicuous surface Fermi arcs connecting surface projections of the nodes.Here,using angle-resolved photoemission spectroscopy,we have systematically investigated the(001)surface states of pristine and Ni-doped Co Si.The surface states form saddle-like band structures at/near the time-reversal invariant point near the Fermi level.The Fermi arcs undergo consecutive Lifshitz transitions at the saddle points X,leading to changes of the Fermi arc configuration.As the density of states has a van Hove singularity at the saddle points,exotic many-body physical phenomena may emerge accompanied by the topological transitions of surface Fermi arcs.展开更多
基金supported by the National Natural Science Foundation of China(U1832202,11888101,11920101005,12141402,and 12274459)the Chinese Academy of Sciences(QYZDB-SSW-SLH043,XDB33020100,and XDB28000000)+4 种基金the Beijing Municipal Science and Technology Commission(Z171100002017018,and Z200005)the National Key R&D Program of China(2018YFE0202600,2022YFA1403100,and 2022YFA1403800)the Fundamental Research Funds for the Central Universities and Research Funds of Renmin University of China(RUC)(18XNLG14,19XNLG13,19XNLG17,and 20XNH062)the Synergic Extreme Condition User Facility,Beijing,ChinaBeijing National Laboratory for Condensed Matter Physics。
基金supported by the Ministry of Science and Technology of China(Grant Nos.2016YFA0401000,2016YFA0300600,2015CB921300,and 2015CB921000)the National Natural Science Foundation of China(Grant Nos.11227903,and 11574371)and the Chinese Academy of Sciences(Grant Nos.XDB07000000,and XDPB08-1)
文摘Recently we developed a technique of ozone/vacuum annealing to continuously change the doping level of the surface of Bi_2Sr_2CaCu_2O_(8+)and measured a nearly whole superconducting dome on one surface by in-situ angle-resolved photoemission spectroscopy [arXiv: 1805.06450]. Here we study the evolution of the electronic structures of Bi_2Sr_2CaCu_2O_(8+)xusing this technique together with tight binding fits. The tight binding parameters are extracted to study their evolution with doping.
基金supported by the Ministry of Science and Technology of China(Grant Nos.2016YFA0401000,2016YFA0300600,2018YFE0202600,and 2016YFA0300504)the National Natural Science Foundation of China(Grant Nos.U1832202,11774423,118224121,and 1888101)+4 种基金the Chinese Academy of Sciences(Grant Nos.QYZDB-SSW-SLH043,XDB33020100,and XDB28000000)the Beijing Natural Science Foundation(Grant No.Z200005)the Fundamental Research Funds for the Central Universities and Research Funds of Renmin University of China(Grant Nos.18XNLG14,and 19XNLG17)the Beijing Municipal Science and Technology Commission(Grant No.Z171100002017018)support by the CAS Pioneer“Hundred Talents Program”(type C)。
文摘The CoSi family hosts unconventional topological nodes with nonzero Chern numbers.The nontrivial topology is manifested by conspicuous surface Fermi arcs connecting surface projections of the nodes.Here,using angle-resolved photoemission spectroscopy,we have systematically investigated the(001)surface states of pristine and Ni-doped Co Si.The surface states form saddle-like band structures at/near the time-reversal invariant point near the Fermi level.The Fermi arcs undergo consecutive Lifshitz transitions at the saddle points X,leading to changes of the Fermi arc configuration.As the density of states has a van Hove singularity at the saddle points,exotic many-body physical phenomena may emerge accompanied by the topological transitions of surface Fermi arcs.