期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
High‑Quality Epitaxial N Doped Graphene on SiC with Tunable Interfacial Interactions via Electron/Ion Bridges for Stable Lithium‑Ion Storage 被引量:2
1
作者 Changlong Sun Xin Xu +5 位作者 cenlin gui Fuzhou Chen Yian Wang Shengzhou Chen Minhua Shao Jiahai Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第11期185-204,共20页
Tailoring the interfacial interaction in SiCbased anode materials is crucial to the accomplishment of higher energy capacities and longer cycle lives for lithium-ion storage.In this paper,atomic-scale tunable interfac... Tailoring the interfacial interaction in SiCbased anode materials is crucial to the accomplishment of higher energy capacities and longer cycle lives for lithium-ion storage.In this paper,atomic-scale tunable interfacial interaction is achieved by epitaxial growth of high-quality N doped graphene(NG)on SiC(NG@SiC).This well-designed NG@SiC heterojunction demonstrates an intrinsic electric field with intensive interfacial interaction,making it an ideal prototype to thoroughly understand the configurations of electron/ion bridges and the mechanisms of interatomic electron migration.Both density functional theory(DFT)analysis and electrochemical kinetic analysis reveal that these intriguing electron/ion bridges can control and tailor the interfacial interaction via the interfacial coupled chemical bonds,enhancing the interfacial charge transfer kinetics and preventing pulverization/aggregation.As a proof-of-concept study,this well-designed NG@SiC anode shows good reversible capacity(1197.5 mAh g^(−1)after 200 cycles at 0.1 A g^(−1))and cycling durability with 76.6%capacity retention at 447.8 mAh g^(−1)after 1000 cycles at 10.0 A g^(−1).As expected,the lithium-ion full cell(LiFePO_(4)/C//NG@SiC)shows superior rate capability and cycling stability.This interfacial interaction tailoring strategy via epitaxial growth method provides new opportunities for traditional SiC-based anodes to achieve high-performance lithium-ion storage and beyond. 展开更多
关键词 SIC HETEROJUNCTION Interfacial engineering Lithium-ion battery DFT calculation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部