期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Soil Organic Carbon Sequestration Potential in Nectarine Orchards under Different Reclamation Systems
1
作者 Yixiang WANG Boqi WENG +3 位作者 Jing YE Chengji WANG cenwei liu Yanchun LI 《Agricultural Science & Technology》 CAS 2017年第7期1192-1195,1207,共5页
The Red Soil Hilly Region in South China, where there is a high capacity of carbon(C), and the land use and vegetation cover change greatly, is an important ecological area in the world, and has an important impact on... The Red Soil Hilly Region in South China, where there is a high capacity of carbon(C), and the land use and vegetation cover change greatly, is an important ecological area in the world, and has an important impact on the global carbon cycle and the seasonal fluctuation of atmospheric CO_2. To better evaluate the effects of reclamation systems in orchards converted from grasslands on soil carbon sequestration, we investigated soil organic carbon(SOC) content and stable C isotope(δ^(13)C)composition in three nectarine orchards at Yuchi Experimental Station in South China. Compared with the sloping clean tillage orchard and terraced clean tillage orchard, SOC content in the terraced orchard with grass cover was increased by 14.90% to 38.49%, and 7.40% to 15.33%, respectively. During the 14 years after orchard establishment, the soil organic matter sources influenced both δ^(13)C distribution with depth and carbon replacement. SOC turnover of the upper soil layer in the terraced orchard with grass cover(a mean 63.05% of replacement in the 20 cm after 14 years) was 1.59 and 1.41 times larger than that of the sloping clean tillage orchard and terraced clean tillage orchard under subtropical conditions, respectively. The equilibrium value of soil organic carbon in the three treatments ranged from 16.067 to 25.608 g/kg under the experimental conditions. The equilibrium value of soil organic carbon in the surface layer under grass cover was 54.801 t/hm^2, and the carbon sequestration potential was 24.695 1 t/hm^2. 展开更多
关键词 土壤有机碳 油桃 中国南方地区 果园土壤 大气CO2浓度 复垦 覆盖变化 稳定碳同位素
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部