Formation of negative static charges (e-) throughout troposphere is a natural phenomenon revealed by some weather events such as storms and lightning flashes that accompany thunderclouds. This climatic phenomenon (for...Formation of negative static charges (e-) throughout troposphere is a natural phenomenon revealed by some weather events such as storms and lightning flashes that accompany thunderclouds. This climatic phenomenon (formation of negative charge in that case) has long been considered as physical phenomena of very small space-time scales. Now we have good reasons to say that this perception of troposphere electrical status is totally meaningless. Indeed, it is now easy to show that significant numbers of electrons are provided to troposphere at each appearance of a thunderstorm (or a lightning flash). Thereafter, movement implemented in the troposphere by winds (e.g., West African aerojet) contributes to the formation of low altitudes Electrojets (e.g., West African Equatorial Aerojet gives birth to West African Equatorial Electrojet). The existence of Low Layers Equatorial Electrojets (LL-EEJ) was totally unknown by the first theorists who have studied the Earth’s Ionosphere Plasma Physics and Electrodynamics. This mistake has led their followers to many questions unanswered in their attempt to explain the longitudinal and seasonal variations of observed EEJ. In this paper, we will provide many useful explanations on the manner in which clouds provide oxygen to troposphere and thereafter trigger negative static charges (e-) throughout both troposphere and ionosphere. Indeed, this paper also explains how, opportunely, the ITF (inter tropical front) plays the role of the tap which facilitates oxygen transfer from troposphere to ionosphere. Detailed studies on the Earth’s troposphere plasma physics and electrodynamics are impatiently awaited.展开更多
Wind stress impacts on ocean relatively high waves can be perfectly illustrated by a recurrent phenomenon in the Sahara desert. Indeed, on this area where the surface wind can blow without encountering major obstacle ...Wind stress impacts on ocean relatively high waves can be perfectly illustrated by a recurrent phenomenon in the Sahara desert. Indeed, on this area where the surface wind can blow without encountering major obstacle out of the sand dunes, these main targets are gradually eroded and displaced by the wind on dozens of meters. This experience highlights the action of wind on granular targets (clusters of sand or water slides) and motivates studies similar to ours, where we want to simulate impact of wind stress and breaking on the spatio-temporal evolution of the envelope of ocean relatively high waves: Impact which can inappropriately deflect the waves on ships, oil platforms or coastal infrastructures. Euler and Navier-Stokes equations allow a mathematical formulation of the gravity wave motion (ocean waves are considered in our work as a system of water particles which are held together by low surface tension) and wind acts on targets through friction forces or stress. Michel Talon stationary phase method is used to numerically solve the equations that model the impact of wind on a stationary Gaussian.展开更多
文摘Formation of negative static charges (e-) throughout troposphere is a natural phenomenon revealed by some weather events such as storms and lightning flashes that accompany thunderclouds. This climatic phenomenon (formation of negative charge in that case) has long been considered as physical phenomena of very small space-time scales. Now we have good reasons to say that this perception of troposphere electrical status is totally meaningless. Indeed, it is now easy to show that significant numbers of electrons are provided to troposphere at each appearance of a thunderstorm (or a lightning flash). Thereafter, movement implemented in the troposphere by winds (e.g., West African aerojet) contributes to the formation of low altitudes Electrojets (e.g., West African Equatorial Aerojet gives birth to West African Equatorial Electrojet). The existence of Low Layers Equatorial Electrojets (LL-EEJ) was totally unknown by the first theorists who have studied the Earth’s Ionosphere Plasma Physics and Electrodynamics. This mistake has led their followers to many questions unanswered in their attempt to explain the longitudinal and seasonal variations of observed EEJ. In this paper, we will provide many useful explanations on the manner in which clouds provide oxygen to troposphere and thereafter trigger negative static charges (e-) throughout both troposphere and ionosphere. Indeed, this paper also explains how, opportunely, the ITF (inter tropical front) plays the role of the tap which facilitates oxygen transfer from troposphere to ionosphere. Detailed studies on the Earth’s troposphere plasma physics and electrodynamics are impatiently awaited.
文摘Wind stress impacts on ocean relatively high waves can be perfectly illustrated by a recurrent phenomenon in the Sahara desert. Indeed, on this area where the surface wind can blow without encountering major obstacle out of the sand dunes, these main targets are gradually eroded and displaced by the wind on dozens of meters. This experience highlights the action of wind on granular targets (clusters of sand or water slides) and motivates studies similar to ours, where we want to simulate impact of wind stress and breaking on the spatio-temporal evolution of the envelope of ocean relatively high waves: Impact which can inappropriately deflect the waves on ships, oil platforms or coastal infrastructures. Euler and Navier-Stokes equations allow a mathematical formulation of the gravity wave motion (ocean waves are considered in our work as a system of water particles which are held together by low surface tension) and wind acts on targets through friction forces or stress. Michel Talon stationary phase method is used to numerically solve the equations that model the impact of wind on a stationary Gaussian.