Glycinebetaine (Glybet) accumulation, photosynthetic efficiency and growth performance in indica rice cultivated under salt stress and extreme pH stress were investigated. Betaine aldehyde dehydrogenase (BADH) act...Glycinebetaine (Glybet) accumulation, photosynthetic efficiency and growth performance in indica rice cultivated under salt stress and extreme pH stress were investigated. Betaine aldehyde dehydrogenase (BADH) activity and Glybet accumulation in the seedlings of salt-tolerant and salt-sensitive rice varieties grown under saline and acidic conditions peaked after treatment for 72 h and 96 h, respectively, and were higher than those grown under neutral pH and alkaline salt stress. A positive correlation was found between BADH activity and Glybet content in both salt-tolerant (P=0.71) and salt-sensitive (P=0.86) genotypes. The chlorophyll a, chlorophyll b, total chlorophyll and total carotenoids contents in the stressed seedlings significantly decreased under both acidic and alkaline stresses, especially in the salt-sensitive genotype. Similarly, the maximum quantum yield of PSII (Fv/Fm), photon yield of PSII (ФPSII), non-photochemical quenching (NPQ) and net photosynthetic rate (Pn) in the stressed seedlings were inhibited, leading to overall growth reduction. The positive correlations between chlorophyll a content and Fv/Fm, total chlorophyll content and ФPSII, and Pn as well as Pn and leaf area in both salt-tolerant and salt-sensitive genotypes were found. Saline acidic and saline alkaline soils may play a key role affecting vegetative growth prior to the reproductive stage in rice plants.展开更多
The aim of this study was to investigate the biochemical, physiological and morphological responses of sugarcane to iso- osmotic salt and water-deficit stress. Disease-free sugarcane plantlets derived from meristem cu...The aim of this study was to investigate the biochemical, physiological and morphological responses of sugarcane to iso- osmotic salt and water-deficit stress. Disease-free sugarcane plantlets derived from meristem cuttings were photo- autotrophically grown in MS media and subsequently exposed to -0.23 (control), -0.67 or -1.20 MPa iso-osmotic NaCl (salt stress) or mannitol (water-deficit stress). Chlorophyll a (Chl a), chlorophyll b (Chl b), total carotenoids (Cx+c), maximum quantum yield of PSII (Fv/Fm), photon yield of PSII (ΦPSII), stomatal conductance (Gs) and transpiration rate (E) in the stressed plantlets were significantly reduced when compared to those of plantlets of the control group (without mannitol or NaCl), leading to net-photosynthetic rate (Pn) and growth reduction with positive correlation. In addition, physiological changes and growth parameters of plantlets in the salt stress conditions were more sharply reduced than those in waterdeficit stress conditions. On the other hand, the proline content and non-photochemical quenching (NPQ) in the leaves of stressed plantlets increased significantly, especially in response to iso-osmotic salt stress. The chlorophyll pigments in iso-osmotic stressed leaves were significantly degraded (r^2 = 0.93), related to low water oxidation (r^2 = 0.87), low net- photosynthetic rate (r^2 = 0.81), and growth reduction (r^2 = 0.97). The multivariate biochemical, physiological and growth parameters in the present study should be further used to develop salt, or drought, tolerance indices in sugarcane breeding programs.展开更多
基金supported by the National Center for Genetic Engineering and Biotechnology (BIOTEC) (Grant No. BT-B-06-RG-14-4502)partly funded by the International Atomic Energy Agency (IAEA) (Contract No. 12998/R0)
文摘Glycinebetaine (Glybet) accumulation, photosynthetic efficiency and growth performance in indica rice cultivated under salt stress and extreme pH stress were investigated. Betaine aldehyde dehydrogenase (BADH) activity and Glybet accumulation in the seedlings of salt-tolerant and salt-sensitive rice varieties grown under saline and acidic conditions peaked after treatment for 72 h and 96 h, respectively, and were higher than those grown under neutral pH and alkaline salt stress. A positive correlation was found between BADH activity and Glybet content in both salt-tolerant (P=0.71) and salt-sensitive (P=0.86) genotypes. The chlorophyll a, chlorophyll b, total chlorophyll and total carotenoids contents in the stressed seedlings significantly decreased under both acidic and alkaline stresses, especially in the salt-sensitive genotype. Similarly, the maximum quantum yield of PSII (Fv/Fm), photon yield of PSII (ФPSII), non-photochemical quenching (NPQ) and net photosynthetic rate (Pn) in the stressed seedlings were inhibited, leading to overall growth reduction. The positive correlations between chlorophyll a content and Fv/Fm, total chlorophyll content and ФPSII, and Pn as well as Pn and leaf area in both salt-tolerant and salt-sensitive genotypes were found. Saline acidic and saline alkaline soils may play a key role affecting vegetative growth prior to the reproductive stage in rice plants.
基金funded by the Mitr Phol Sugarcane Research Center,Thailand(BT-B-03-PT-BC-4930)supported by the National Center for Genetic Engineering and Biotechnology,Thailand (BIOTEC) (BT-B-02-RG-BC-4905)
文摘The aim of this study was to investigate the biochemical, physiological and morphological responses of sugarcane to iso- osmotic salt and water-deficit stress. Disease-free sugarcane plantlets derived from meristem cuttings were photo- autotrophically grown in MS media and subsequently exposed to -0.23 (control), -0.67 or -1.20 MPa iso-osmotic NaCl (salt stress) or mannitol (water-deficit stress). Chlorophyll a (Chl a), chlorophyll b (Chl b), total carotenoids (Cx+c), maximum quantum yield of PSII (Fv/Fm), photon yield of PSII (ΦPSII), stomatal conductance (Gs) and transpiration rate (E) in the stressed plantlets were significantly reduced when compared to those of plantlets of the control group (without mannitol or NaCl), leading to net-photosynthetic rate (Pn) and growth reduction with positive correlation. In addition, physiological changes and growth parameters of plantlets in the salt stress conditions were more sharply reduced than those in waterdeficit stress conditions. On the other hand, the proline content and non-photochemical quenching (NPQ) in the leaves of stressed plantlets increased significantly, especially in response to iso-osmotic salt stress. The chlorophyll pigments in iso-osmotic stressed leaves were significantly degraded (r^2 = 0.93), related to low water oxidation (r^2 = 0.87), low net- photosynthetic rate (r^2 = 0.81), and growth reduction (r^2 = 0.97). The multivariate biochemical, physiological and growth parameters in the present study should be further used to develop salt, or drought, tolerance indices in sugarcane breeding programs.