期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Multi-function adsorbent-photocatalyst MXene-TiO_(2) composites for removal of enrofloxacin antibiotic from water 被引量:3
1
作者 Siwanat Sukidpaneenid chamorn chawengkijwanich +3 位作者 Chonlada Pokhum Toshihiro Isobe Pakorn Opaprakasit Paiboon Sreearunothai 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2023年第2期414-428,共15页
MXenes,a new family of two-dimensional transition metal carbides or nitrides,have attracted tremendous attention for various applications due to their unique properties such as good electrical conductivity,hydrophilic... MXenes,a new family of two-dimensional transition metal carbides or nitrides,have attracted tremendous attention for various applications due to their unique properties such as good electrical conductivity,hydrophilicity,and ion intercalability.In this work,Ti_(3)C_(2) MXene,or MX,is converted to MX-TiO_(2) composites using a simple and rapid microwave hydrothermal treatment in HCl/NaCl mixture solution that induces formation of fine TiO_(2) particles on the MX parent structure and imparts photocatalytic activity to the resulting MX-TiO_(2) composites.The composites were used for enrofloxacin(ENR),a frequently found contaminating antibiotic,removal from water.The relative amount of the MX and TiO_(2) can be controlled by controlling the hydrothermal temperature resulting in composites with tunable adsorption/photocatalytic properties.NaCl addition was found to play important role as composites synthesized without NaCl could not adsorb enrofloxacin well.Adding NaCl into the hydrothermal treatment causes sodium ions to be simultaneously intercalated into the composite structure,improving ENR adsorption greatly from 1 to 6 mg ENR/g composite.It also slows down the MX to TiO2 conversion leading to a smaller and more uniform distribution of TiO_(2) particles on the structure.MX-TiO_(2)/NaCl composites,which have sodium intercalated in their structures,showed both higher ENR adsorption and photocatalytic activity than composites without NaCl despite the latter having higher TiO2 content.Adsorbed ENR on the composites can be efficiently degraded by free radicals generated from the photoexcited TiO2 particles,leading to high photocatalytic degradation efficiency.This demonstrates the synergetic effect between adsorption and photocatalytic degradation of the synthesized compounds. 展开更多
关键词 MXene-TiO_(2)composites Ti3C2 Ion-exchange Photocatalytic degradation ENROFLOXACIN Antibiotics removal
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部