Chronic liver diseases that inevitably lead to hepatic fibrosis, cirrhosis and/or hepatocellular carcinoma have become a major cause of illness and death worldwide. Among them, cholangiopathies or cholestatic liver di...Chronic liver diseases that inevitably lead to hepatic fibrosis, cirrhosis and/or hepatocellular carcinoma have become a major cause of illness and death worldwide. Among them, cholangiopathies or cholestatic liver diseases comprise a large group of conditions in which injury is primarily focused on the biliary system. These include congenital diseases(such as biliary atresia and cystic fibrosis), acquired diseases(such as primary sclerosing cholangitis and primary biliary cirrhosis), and those that arise from secondary damage to the biliary tree from obstruction, cholangitis or ischaemia. These conditions are associated with a specific pattern of chronic liver injury centered on damaged bile ducts that drive the development of peribiliary fibrosis and, ultimately, biliary cirrhosis and liver failure. For most, there is no established medical therapy and, hence, these diseases remain one of the most important indications for liver transplantation.As a result, there is a major need to develop new therapies that can prevent the development of chronic biliary injury and fibrosis. This mini-review briefly discusses the pathophysiology of liver fibrosis and its progression to cirrhosis.We make a special emphasis on biliary fibrosis and current therapeutic options,such as angiotensin converting enzyme-2(known as ACE2) over-expression in the diseased liver as a novel potential therapy to treat this condition.展开更多
Portal hypertension and bleeding from gastroesophageal varices is the major cause of morbidity and mortality in patients with cirrhosis. Portal hypertension is initiated by increased intrahepatic vascular resistance a...Portal hypertension and bleeding from gastroesophageal varices is the major cause of morbidity and mortality in patients with cirrhosis. Portal hypertension is initiated by increased intrahepatic vascular resistance and a hyperdynamic circulatory state. The latter is characterized by a high cardiac output, increased total blood volume and splanchnic vasodilatation, resulting in increased mesenteric blood flow. Pharmacological manipulation of cirrhotic portal hypertension targets both the splanchnic and hepatic vascular beds. Drugs such as angiotensin converting enzyme inhibitors and angiotensin Ⅱ type receptor 1 blockers, which target the components of the classical renin angiotensin system(RAS), are expected to reduce intrahepatic vascular tone by reducing extracellular matrix deposition and vasoactivity of contractile cells and thereby improve portal hypertension. However, these drugs have been shown to produce significant offtarget effects such as systemic hypotension and renal failure. Therefore, the current pharmacological mainstay in clinical practice to prevent variceal bleeding and improving patient survival by reducing portal pressure is non-selective-blockers(NSBBs). These NSBBs work by reducing cardiac output and splanchnic vasodilatation but most patients do not achieve an optimal therapeutic response and a significant proportion of patients are unable to tolerate these drugs.Although statins, used alone or in combination with NSBBs, have been shown to improve portal pressure and overall mortality in cirrhotic patients, further randomized clinical trials are warranted involving larger patient populations with clear clinical end points. On the other hand, recent findings from studies that have investigated the potential use of the blockers of the components of the alternate RAS provided compelling evidence that could lead to the development of drugs targeting the splanchnic vascular bed to inhibit splanchnic vasodilatation in portal hypertension. This review outlines the mechanisms related to the pathogenesis of portal hypertension and attempts to provide an update on currently available therapeutic approaches in the management of portal hypertension with special emphasis on how the alternate RAS could be manipulated in our search for development of safe, specific and effective novel therapies to treat portal hypertension in cirrhosis.展开更多
AIM To determine if manipulation of dietary advanced glycation end product(AGE), intake affects nonalcoholic fatty liver disease(NAFLD) progression and whether these effects are mediated via RAGE. METHODS Male C57Bl6 ...AIM To determine if manipulation of dietary advanced glycation end product(AGE), intake affects nonalcoholic fatty liver disease(NAFLD) progression and whether these effects are mediated via RAGE. METHODS Male C57Bl6 mice were fed a high fat, high fructose, high cholesterol(HFHC) diet for 33 wk and compared with animals on normal chow. A third group were given a HFHC diet that was high in AGEs. Another group was given a HFHC diet that was marinated in vinegar to prevent the formation of AGEs. In a second experiment, RAGE KO animals were fed a HFHC diet or a high AGE HFHC diet and compared with wildtype controls. Hepatic biochemistry, histology, picrosirius red morphometry and hepatic mR NA were determined. RESULTS Long-term consumption of the HFHC diet generated significant steatohepatitis and fibrosis after 33 wk. In this model, hepatic 4-hydroxynonenal content(a marker of chronic oxidative stress), hepatocyte ballooning, picrosirius red staining, α-smooth muscle actin and collagen type 1A gene expression were all significantly increased. Increasing the AGE content of the HFHC diet by baking further increased these markers of liver damage, but this was abrogated by pre-marination in acetic acid. In response to the HFHC diet, RAGE-/-animals developed NASH of similar severity to RAGE+/+ animals but were protected from the additional harmful effects of the high AGE containing diet. Studies in isolated Kupffer cells showed that AGEs increase cell proliferation and oxidative stress, providing a likely mechanism through which these compounds contribute to liver injury. CONCLUSION In the HFHC model of NAFLD, manipulation of dietary AGEs modulates liver injury, inflammation, and liver fibrosis via a RAGE dependent pathway. This suggests that pharmacological and dietary strategies targeting the AGE/RAGE pathway could slow the progression of NAFLD.展开更多
Portal hypertension is responsible for the bulk of the morbidity and mortality in patients with cirrhosis.Drug therapy to reduce portal pressure involves targeting two vascular beds.The first approach is to reduce int...Portal hypertension is responsible for the bulk of the morbidity and mortality in patients with cirrhosis.Drug therapy to reduce portal pressure involves targeting two vascular beds.The first approach is to reduce intra hepatic vascular tone induced by the activity of powerful vasocontrictors such as angiotensin Ⅱ,endothelin-1 and the sympathetic system and mediated via contraction of perisinusoidal myofibroblasts and pervascular smooth muscle cells.The second approach is to reduce mesenteric and portal blood flow.Non-selective b-blockers are widely used and have been shown to prolong patient survival and reduce oesophageal variceal bleeding in advanced cirrhosis.However many patients are unable to tolerate these drugs and they are ineffective in a significant proportion of patients.Unfortunately there are no other drug therapies that have proven efficacy in the treatment of portal hypertension and prevention of variceal bleeding.This review briefly outlines current therapeutic approaches to themanagement of portal hypertension,and the evidence supporting the role of the renin angiotensin system(RAS) and the use of RAS blockers in this condition.It will also outline recent advances in RAS research that could lead to the development of new treatments focusing in particular on the recently discovered "alternate axis" of the RAS.展开更多
基金Australian National Health and Medical Research Council project grants,No.APP1062372 and No.APP1124125
文摘Chronic liver diseases that inevitably lead to hepatic fibrosis, cirrhosis and/or hepatocellular carcinoma have become a major cause of illness and death worldwide. Among them, cholangiopathies or cholestatic liver diseases comprise a large group of conditions in which injury is primarily focused on the biliary system. These include congenital diseases(such as biliary atresia and cystic fibrosis), acquired diseases(such as primary sclerosing cholangitis and primary biliary cirrhosis), and those that arise from secondary damage to the biliary tree from obstruction, cholangitis or ischaemia. These conditions are associated with a specific pattern of chronic liver injury centered on damaged bile ducts that drive the development of peribiliary fibrosis and, ultimately, biliary cirrhosis and liver failure. For most, there is no established medical therapy and, hence, these diseases remain one of the most important indications for liver transplantation.As a result, there is a major need to develop new therapies that can prevent the development of chronic biliary injury and fibrosis. This mini-review briefly discusses the pathophysiology of liver fibrosis and its progression to cirrhosis.We make a special emphasis on biliary fibrosis and current therapeutic options,such as angiotensin converting enzyme-2(known as ACE2) over-expression in the diseased liver as a novel potential therapy to treat this condition.
基金Supported by National Health and Medical Research Council (NHMRC) of Australia Project Grants,No. APP1124125。
文摘Portal hypertension and bleeding from gastroesophageal varices is the major cause of morbidity and mortality in patients with cirrhosis. Portal hypertension is initiated by increased intrahepatic vascular resistance and a hyperdynamic circulatory state. The latter is characterized by a high cardiac output, increased total blood volume and splanchnic vasodilatation, resulting in increased mesenteric blood flow. Pharmacological manipulation of cirrhotic portal hypertension targets both the splanchnic and hepatic vascular beds. Drugs such as angiotensin converting enzyme inhibitors and angiotensin Ⅱ type receptor 1 blockers, which target the components of the classical renin angiotensin system(RAS), are expected to reduce intrahepatic vascular tone by reducing extracellular matrix deposition and vasoactivity of contractile cells and thereby improve portal hypertension. However, these drugs have been shown to produce significant offtarget effects such as systemic hypotension and renal failure. Therefore, the current pharmacological mainstay in clinical practice to prevent variceal bleeding and improving patient survival by reducing portal pressure is non-selective-blockers(NSBBs). These NSBBs work by reducing cardiac output and splanchnic vasodilatation but most patients do not achieve an optimal therapeutic response and a significant proportion of patients are unable to tolerate these drugs.Although statins, used alone or in combination with NSBBs, have been shown to improve portal pressure and overall mortality in cirrhotic patients, further randomized clinical trials are warranted involving larger patient populations with clear clinical end points. On the other hand, recent findings from studies that have investigated the potential use of the blockers of the components of the alternate RAS provided compelling evidence that could lead to the development of drugs targeting the splanchnic vascular bed to inhibit splanchnic vasodilatation in portal hypertension. This review outlines the mechanisms related to the pathogenesis of portal hypertension and attempts to provide an update on currently available therapeutic approaches in the management of portal hypertension with special emphasis on how the alternate RAS could be manipulated in our search for development of safe, specific and effective novel therapies to treat portal hypertension in cirrhosis.
基金Supported by National Health and Medical Research Council of AustraliaNHMRC early career fellowship
文摘AIM To determine if manipulation of dietary advanced glycation end product(AGE), intake affects nonalcoholic fatty liver disease(NAFLD) progression and whether these effects are mediated via RAGE. METHODS Male C57Bl6 mice were fed a high fat, high fructose, high cholesterol(HFHC) diet for 33 wk and compared with animals on normal chow. A third group were given a HFHC diet that was high in AGEs. Another group was given a HFHC diet that was marinated in vinegar to prevent the formation of AGEs. In a second experiment, RAGE KO animals were fed a HFHC diet or a high AGE HFHC diet and compared with wildtype controls. Hepatic biochemistry, histology, picrosirius red morphometry and hepatic mR NA were determined. RESULTS Long-term consumption of the HFHC diet generated significant steatohepatitis and fibrosis after 33 wk. In this model, hepatic 4-hydroxynonenal content(a marker of chronic oxidative stress), hepatocyte ballooning, picrosirius red staining, α-smooth muscle actin and collagen type 1A gene expression were all significantly increased. Increasing the AGE content of the HFHC diet by baking further increased these markers of liver damage, but this was abrogated by pre-marination in acetic acid. In response to the HFHC diet, RAGE-/-animals developed NASH of similar severity to RAGE+/+ animals but were protected from the additional harmful effects of the high AGE containing diet. Studies in isolated Kupffer cells showed that AGEs increase cell proliferation and oxidative stress, providing a likely mechanism through which these compounds contribute to liver injury. CONCLUSION In the HFHC model of NAFLD, manipulation of dietary AGEs modulates liver injury, inflammation, and liver fibrosis via a RAGE dependent pathway. This suggests that pharmacological and dietary strategies targeting the AGE/RAGE pathway could slow the progression of NAFLD.
基金Supported by Grant from the National Health and Medical Research Council of Australia
文摘Portal hypertension is responsible for the bulk of the morbidity and mortality in patients with cirrhosis.Drug therapy to reduce portal pressure involves targeting two vascular beds.The first approach is to reduce intra hepatic vascular tone induced by the activity of powerful vasocontrictors such as angiotensin Ⅱ,endothelin-1 and the sympathetic system and mediated via contraction of perisinusoidal myofibroblasts and pervascular smooth muscle cells.The second approach is to reduce mesenteric and portal blood flow.Non-selective b-blockers are widely used and have been shown to prolong patient survival and reduce oesophageal variceal bleeding in advanced cirrhosis.However many patients are unable to tolerate these drugs and they are ineffective in a significant proportion of patients.Unfortunately there are no other drug therapies that have proven efficacy in the treatment of portal hypertension and prevention of variceal bleeding.This review briefly outlines current therapeutic approaches to themanagement of portal hypertension,and the evidence supporting the role of the renin angiotensin system(RAS) and the use of RAS blockers in this condition.It will also outline recent advances in RAS research that could lead to the development of new treatments focusing in particular on the recently discovered "alternate axis" of the RAS.