In this study,the effects of Al addition on the corrosion behavior of pure Mg with controlled impurity contents were systematically analyzed according to the processing history.The results revealed that the corrosion ...In this study,the effects of Al addition on the corrosion behavior of pure Mg with controlled impurity contents were systematically analyzed according to the processing history.The results revealed that the corrosion behavior of high-purity Mg-Al alloys is strongly related to changes in the microstructure,including theβphase and Al-Mn or Al-Fe phases,and the protectiveness of the surface film according to the Al content and processing history.In the as-cast alloys,the corrosion rate increased due to the increase ofβphase as the Al content increased,but in the as-extruded alloys,the corrosion rate,which was high due to intermetallic compounds caused by impurities in the low Al alloy,decreased as the Al content increased,and then increased again.This is due to the combined effect of the increase of theβphase and decrease of the impurity effect,and the increase of the dissolved Al content.The results suggest that it is necessary to analyze the effect of alloying elements on the corrosion behavior of pure Mg with information concerning the impurity content and processing history.展开更多
Hydrogen evolution reaction is inevitable during the corrosion of Mg alloys.The effect of hydrogen on the corrosion behavior of the Mg-2Zn and Mg-5Zn alloys is investigated by charging hydrogen treatment.The surface m...Hydrogen evolution reaction is inevitable during the corrosion of Mg alloys.The effect of hydrogen on the corrosion behavior of the Mg-2Zn and Mg-5Zn alloys is investigated by charging hydrogen treatment.The surface morphologies of the samples after charging hydrogen were observed using a scanning electron microscopy(SEM)and the corrosion resistance was evaluated by polarization curves.It is found that there are oxide films formed on the surface of the charged hydrogen samples.The low hydrogen evolution rate is helpful to improve the corrosion resistance of Mg alloys,while the high hydrogen evolution rate can increases the defects in the films and further deteriorates their protection ability.Also,the charging hydrogen effect is greatly associated with the microstructure of Mg substrate.展开更多
基金the main research program of the Korea Institute of Materials Science(Grant No.PNK8150)for financially supporting this study
文摘In this study,the effects of Al addition on the corrosion behavior of pure Mg with controlled impurity contents were systematically analyzed according to the processing history.The results revealed that the corrosion behavior of high-purity Mg-Al alloys is strongly related to changes in the microstructure,including theβphase and Al-Mn or Al-Fe phases,and the protectiveness of the surface film according to the Al content and processing history.In the as-cast alloys,the corrosion rate increased due to the increase ofβphase as the Al content increased,but in the as-extruded alloys,the corrosion rate,which was high due to intermetallic compounds caused by impurities in the low Al alloy,decreased as the Al content increased,and then increased again.This is due to the combined effect of the increase of theβphase and decrease of the impurity effect,and the increase of the dissolved Al content.The results suggest that it is necessary to analyze the effect of alloying elements on the corrosion behavior of pure Mg with information concerning the impurity content and processing history.
基金Thanks for the financial support by Korea Institute of Materials Science,National Key Basic Research Program of China(No.2013CB632205)the National Natural Science Foundation of China(No.51471174).
文摘Hydrogen evolution reaction is inevitable during the corrosion of Mg alloys.The effect of hydrogen on the corrosion behavior of the Mg-2Zn and Mg-5Zn alloys is investigated by charging hydrogen treatment.The surface morphologies of the samples after charging hydrogen were observed using a scanning electron microscopy(SEM)and the corrosion resistance was evaluated by polarization curves.It is found that there are oxide films formed on the surface of the charged hydrogen samples.The low hydrogen evolution rate is helpful to improve the corrosion resistance of Mg alloys,while the high hydrogen evolution rate can increases the defects in the films and further deteriorates their protection ability.Also,the charging hydrogen effect is greatly associated with the microstructure of Mg substrate.