A physical simulation method with a combination of dynamic displacement and imbibition was established by integrating nuclear magnetic resonance(NMR)and CT scanning.The microscopic production mechanism of tight/shale ...A physical simulation method with a combination of dynamic displacement and imbibition was established by integrating nuclear magnetic resonance(NMR)and CT scanning.The microscopic production mechanism of tight/shale oil in pore throat by dynamic imbibition and the influencing factors on the development effect of dynamic imbibition were analyzed.The dynamic seepage process of fracking-soaking-backflow-production integration was simulated,which reveals the dynamic production characteristics at different development stages and their contribution to enhancing oil recovery(EOR).The seepage of tight/shale reservoirs can be divided into three stages:strong displacement and weak imbibition as oil produced rapidly by displacement from macropores and fractures,weak displacement and strong imbibition as oil produced slowly by reverse imbibition from small pores,and weak displacement and weak imbibition at dynamic equilibrium.The greater displacement pressure results in the higher displacement recovery and the lower imbibition recovery.However,if the displacement pressure is too high,the injected water is easy to break through the front and reduce the recovery degree.The higher the permeability,the greater the imbibition and displacement recovery,the shorter the time of imbibition balance,and the higher the final recovery.The fractures can effectively increase the imbibition contact area between matrix and water,reduce the oil-water seepage resistance,promote the oil-water displacement between matrix and fracture,and improve the oil displacement rate and recovery of the matrix.The soaking after fracturing is beneficial to the imbibition replacement and energy storage of the fluid;also,the effective use of the carrying of the backflow fluid and the displacement in the mining stage is the key to enhancing oil recovery.展开更多
In order to understand the mechanism of air flooding shale oil, an online physical simulation method for enhanced shale oil recovery by air injection was established by integrating CT scanning and nuclear magnetic res...In order to understand the mechanism of air flooding shale oil, an online physical simulation method for enhanced shale oil recovery by air injection was established by integrating CT scanning and nuclear magnetic resonance(NMR). The development effect of shale oil by air flooding under different depletion pressures, the micro-production characteristics of pore throats with different sizes and the mechanism of shale oil recovery by air flooding were analyzed. The effects of air oxygen content, permeability, gas injection pressure, and fractures on the air flooding effect in shale and crude oil production in pores with different sizes were analyzed. The recovery of shale oil can be greatly improved by injecting air into the depleted shale reservoir, but the oil displacement efficiency and the production degree of different levels of pore throats vary with the injection timing. The higher the air oxygen content and the stronger the low-temperature oxidation, the higher the production degree of pores with different sizes and the higher the shale oil recovery. The higher the permeability and the better the pore throat connectivity, the stronger the fluid flow capacity and the higher the shale oil recovery. As the injection pressure increases, the lower limit of the production degree of pore throats decreases, but gas channeling may occur to cause a premature breakthrough;as a result, the recovery increases and then decreases. Fractures can effectively increase the contact area between gas and crude oil, and increase the air sweep coefficient and matrix oil drainage area by supplying oil to fractures through the matrix, which means that a proper fracturing before air injection can help to improve the oil displacement effect under a reasonable production pressure difference.展开更多
Tornado codes have been used in the error control of data transmission in IP network. The efficiency of this erasure codes is critically affected by the short cycles in its bipartite graph. To remove this effect, two ...Tornado codes have been used in the error control of data transmission in IP network. The efficiency of this erasure codes is critically affected by the short cycles in its bipartite graph. To remove this effect, two algorithms are introduced: (1) while generating the graph, the cycle eliminating algorithm is used to reduce the number of the short cycles in it; (2) in the decoding algorithm, cycles that are inevitably in the graph are used to remove decoding efficiency degradation. The simulation results show that they have a better performance than that of general tornado codes.展开更多
A novel Variable-Length Code (VLC), called Alternate VLC (AVLC), is proposed in this letter, which employs two types of VLC to encode source symbols alternately. Its advantage is that it can not only stop the symbol e...A novel Variable-Length Code (VLC), called Alternate VLC (AVLC), is proposed in this letter, which employs two types of VLC to encode source symbols alternately. Its advantage is that it can not only stop the symbol error propagation effect, but also correct symbol insertion errors and avoid symbol deletion er-rors, so the original sequence number of symbols can be kept correctly, which is very important in video com-munication.展开更多
A novel moving objects segmentation method is proposed in this paper. A modified three dimensional recursive search (3DRS) algorithm is used in order to obtain motion information accurately. A motion feature descrip...A novel moving objects segmentation method is proposed in this paper. A modified three dimensional recursive search (3DRS) algorithm is used in order to obtain motion information accurately. A motion feature descriptor (MFD) is designed to describe motion feature of each block in a picture based on motion intensity, motion in occlusion areas, and motion correlation among neighbouring blocks. Then, a fuzzy C-means clustering algorithm (FCM) is implemented based on those MFDs so as to segment moving objects. Moreover, a new parameter named as gathering degree is used to distinguish foreground moving objects and background motion. Experimental results demonstrate the effectiveness of the proposed method.展开更多
The distribution law of the random code structure of randomly constructed irregular low-density parity-check (LDPC) codes is studied, Based on the Progressive Edge-Growth (PEG) algorithm, a new algorithm which can...The distribution law of the random code structure of randomly constructed irregular low-density parity-check (LDPC) codes is studied, Based on the Progressive Edge-Growth (PEG) algorithm, a new algorithm which can both ellminate short cycles and keep the distribution of the random code structure is presented, The experimentsl results show that the performance of the irregular LDPC codes constructed by the new algorithm is superior to that of the PEG algorithm,展开更多
The semitransparent flexible organic solar cell takes advantages of flexibility,transparency,color adjust ment property,which is more conducive to integrate on buidings and mobile terminals.Ascribing to the developmen...The semitransparent flexible organic solar cell takes advantages of flexibility,transparency,color adjust ment property,which is more conducive to integrate on buidings and mobile terminals.Ascribing to the developments of narrow band gap donors and the new non-fullerene acceptors,the power conversion efficiency of semitransparent flexible organic solar cells has been achieved 10% to 12% with average visible transmittance of 17% to 21%.This review summarizes the molecular design of the most representative layer materials,and discusses the characterization of semitransparent parameters paradigms,then we discuss how to optimize the device in combination with optical simulation,and finally list the recent development of semitransparent flexible electrodes of ITO-free organic solar cells,and give our perspectives on the next step direction.展开更多
In this paper,a distributed topology control algorithm is proposed.By adjusting the transmission power of each node,this algorithm constructs a wireless network topology with minimum-energy property,i.e.,it preserves ...In this paper,a distributed topology control algorithm is proposed.By adjusting the transmission power of each node,this algorithm constructs a wireless network topology with minimum-energy property,i.e.,it preserves a minimum-energy path between every pair of nodes.More-over,the proposed algorithm can be used in both homogenous and heterogeneous wireless networks,and it can also work without an explicit propagation channel model or the position information of nodes.Simulation results show that the proposed algorithm has advantages over the topology control algorithm based on direct-transmission region in terms of average node degree and power efficiency.展开更多
基金Supported by the PetroChina Science and Technology Major Project(2021-117)PetroChina CCUS Major Science and Technology Project(2021ZZ01-03)。
文摘A physical simulation method with a combination of dynamic displacement and imbibition was established by integrating nuclear magnetic resonance(NMR)and CT scanning.The microscopic production mechanism of tight/shale oil in pore throat by dynamic imbibition and the influencing factors on the development effect of dynamic imbibition were analyzed.The dynamic seepage process of fracking-soaking-backflow-production integration was simulated,which reveals the dynamic production characteristics at different development stages and their contribution to enhancing oil recovery(EOR).The seepage of tight/shale reservoirs can be divided into three stages:strong displacement and weak imbibition as oil produced rapidly by displacement from macropores and fractures,weak displacement and strong imbibition as oil produced slowly by reverse imbibition from small pores,and weak displacement and weak imbibition at dynamic equilibrium.The greater displacement pressure results in the higher displacement recovery and the lower imbibition recovery.However,if the displacement pressure is too high,the injected water is easy to break through the front and reduce the recovery degree.The higher the permeability,the greater the imbibition and displacement recovery,the shorter the time of imbibition balance,and the higher the final recovery.The fractures can effectively increase the imbibition contact area between matrix and water,reduce the oil-water seepage resistance,promote the oil-water displacement between matrix and fracture,and improve the oil displacement rate and recovery of the matrix.The soaking after fracturing is beneficial to the imbibition replacement and energy storage of the fluid;also,the effective use of the carrying of the backflow fluid and the displacement in the mining stage is the key to enhancing oil recovery.
基金Supported by the PetroChina Major Scientific and Technological Research Project (2021DJ1102)PetroChina Science and Technology Major Project (2022kt1001)。
文摘In order to understand the mechanism of air flooding shale oil, an online physical simulation method for enhanced shale oil recovery by air injection was established by integrating CT scanning and nuclear magnetic resonance(NMR). The development effect of shale oil by air flooding under different depletion pressures, the micro-production characteristics of pore throats with different sizes and the mechanism of shale oil recovery by air flooding were analyzed. The effects of air oxygen content, permeability, gas injection pressure, and fractures on the air flooding effect in shale and crude oil production in pores with different sizes were analyzed. The recovery of shale oil can be greatly improved by injecting air into the depleted shale reservoir, but the oil displacement efficiency and the production degree of different levels of pore throats vary with the injection timing. The higher the air oxygen content and the stronger the low-temperature oxidation, the higher the production degree of pores with different sizes and the higher the shale oil recovery. The higher the permeability and the better the pore throat connectivity, the stronger the fluid flow capacity and the higher the shale oil recovery. As the injection pressure increases, the lower limit of the production degree of pore throats decreases, but gas channeling may occur to cause a premature breakthrough;as a result, the recovery increases and then decreases. Fractures can effectively increase the contact area between gas and crude oil, and increase the air sweep coefficient and matrix oil drainage area by supplying oil to fractures through the matrix, which means that a proper fracturing before air injection can help to improve the oil displacement effect under a reasonable production pressure difference.
基金Supported by the National Natural Science Foundation of China(No.61072030) & Huawei Technologies Foundation
文摘Tornado codes have been used in the error control of data transmission in IP network. The efficiency of this erasure codes is critically affected by the short cycles in its bipartite graph. To remove this effect, two algorithms are introduced: (1) while generating the graph, the cycle eliminating algorithm is used to reduce the number of the short cycles in it; (2) in the decoding algorithm, cycles that are inevitably in the graph are used to remove decoding efficiency degradation. The simulation results show that they have a better performance than that of general tornado codes.
文摘A novel Variable-Length Code (VLC), called Alternate VLC (AVLC), is proposed in this letter, which employs two types of VLC to encode source symbols alternately. Its advantage is that it can not only stop the symbol error propagation effect, but also correct symbol insertion errors and avoid symbol deletion er-rors, so the original sequence number of symbols can be kept correctly, which is very important in video com-munication.
基金Supported by the National Natural Science Foundation of China (No. 60772134, 60902081, 60902052) the 111 Project (No.B08038) the Fundamental Research Funds for the Central Universities(No.72105457).
文摘A novel moving objects segmentation method is proposed in this paper. A modified three dimensional recursive search (3DRS) algorithm is used in order to obtain motion information accurately. A motion feature descriptor (MFD) is designed to describe motion feature of each block in a picture based on motion intensity, motion in occlusion areas, and motion correlation among neighbouring blocks. Then, a fuzzy C-means clustering algorithm (FCM) is implemented based on those MFDs so as to segment moving objects. Moreover, a new parameter named as gathering degree is used to distinguish foreground moving objects and background motion. Experimental results demonstrate the effectiveness of the proposed method.
基金Supported by the National Natural Science Foundation of China (Grant No. 60172030)Huawei Science FoundationXidian ISN National Key Laboratory
文摘The distribution law of the random code structure of randomly constructed irregular low-density parity-check (LDPC) codes is studied, Based on the Progressive Edge-Growth (PEG) algorithm, a new algorithm which can both ellminate short cycles and keep the distribution of the random code structure is presented, The experimentsl results show that the performance of the irregular LDPC codes constructed by the new algorithm is superior to that of the PEG algorithm,
基金the Fund of the Ministry of Science and Technology of China(No.2016YFA0200700)the National Natural Science Foundation of China(Nos.21534003,91427302,51773047,21604017,21504066)。
文摘The semitransparent flexible organic solar cell takes advantages of flexibility,transparency,color adjust ment property,which is more conducive to integrate on buidings and mobile terminals.Ascribing to the developments of narrow band gap donors and the new non-fullerene acceptors,the power conversion efficiency of semitransparent flexible organic solar cells has been achieved 10% to 12% with average visible transmittance of 17% to 21%.This review summarizes the molecular design of the most representative layer materials,and discusses the characterization of semitransparent parameters paradigms,then we discuss how to optimize the device in combination with optical simulation,and finally list the recent development of semitransparent flexible electrodes of ITO-free organic solar cells,and give our perspectives on the next step direction.
基金supported by the Foundation of State Key Laboratory of Integrated Service Networks(No.00JS63.2.1.DZ01).
文摘In this paper,a distributed topology control algorithm is proposed.By adjusting the transmission power of each node,this algorithm constructs a wireless network topology with minimum-energy property,i.e.,it preserves a minimum-energy path between every pair of nodes.More-over,the proposed algorithm can be used in both homogenous and heterogeneous wireless networks,and it can also work without an explicit propagation channel model or the position information of nodes.Simulation results show that the proposed algorithm has advantages over the topology control algorithm based on direct-transmission region in terms of average node degree and power efficiency.