期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
First-Principles Study on Switching Performance and Spin Filtering Efficiency of Dimethyldihydropyrene/Cyclophanediene Single-Molecule Devices with Zigzag Graphene Nanoribbon Electrodes
1
作者 chang-feng zheng Yan-Qi Mu +1 位作者 Zong-Liang Li Guang-Ping Zhang 《Chinese Journal of Chemical Physics》 SCIE EI CAS 2024年第5期644-652,I0066-I0072,I0100,共17页
Moleculardeviceswith highswitchingperformance and/or the perfect spin filtering effect have always been the pursuit with the development of molecular electronics.Hereb,yusingthe 2001.0V nonequilibrium.Green's func... Moleculardeviceswith highswitchingperformance and/or the perfect spin filtering effect have always been the pursuit with the development of molecular electronics.Hereb,yusingthe 2001.0V nonequilibrium.Green's function method in combination with the density functionaltheory,the switching performance and spin filtering properties of dimethyldihydropyrene(DHP)/cyclophanediene(CPD)photoswitchable molecule connected by carbon atomic chains(CACs)to two zigzag graphene nanoribbon electrodes have been theoretically investigated.The results show that DHP is more conductive than CPD and therefore an evident switching effect is demonstrated,and the switching ratio(RON/OFF)can reach 4.5×103.It is further revealed that the RoON/OF of DHP/CPD closely depends on the length of CACs.More specifically,the RoN/OFF values of DHP/CPD with odd-numbered CACs are larger than those with even-numbered CACs.More interestingly,a high or even perfect spin filtering effect can be obtained in these investigated DHP/CPD single-molecule devices.Our study is helpful for future design of single-molecule switches and spin filters and provides a way to optimize their performance by means of varying the length of bridging CACs. 展开更多
关键词 Single-molecule switch Spin filtering effect Odd-even effect Nonequilibrium Green's function method Density functional theory
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部