Retinal surgery continues to be one of the most technical demanding surgeries for its high manipulation accuracy requirement, small and constrained workspace, and delicate retinal tissue. Robotic systems have the pote...Retinal surgery continues to be one of the most technical demanding surgeries for its high manipulation accuracy requirement, small and constrained workspace, and delicate retinal tissue. Robotic systems have the potential to enhance and expand the capabilities of surgeons during retinal surgery. Thus, focusing on retinal vessel bypass surgery, a master-slave robot system is developed in this paper. This robotic system is designed based on characteristics of retinal vascular bypass surgery and analysis of the surgical workspace in eyeball. A novel end-effector of two degrees of freedom is designed and a novel remote center of motion mechanism is adopted in the robot structure.The kinematics and the mapping relationship are then established, the gravity compensation control strategy and the hand tremor elimination algorithm are applied to achieve the high motion accuracy. The experiments on an artificial eyeball and an in vitro porcine eye are conducted, verifying the feasibility of this system.展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.50675008,51175013)National Hi-tech Research and Development Program of China(863 Program,Grant No.2017YFB1302702)
文摘Retinal surgery continues to be one of the most technical demanding surgeries for its high manipulation accuracy requirement, small and constrained workspace, and delicate retinal tissue. Robotic systems have the potential to enhance and expand the capabilities of surgeons during retinal surgery. Thus, focusing on retinal vessel bypass surgery, a master-slave robot system is developed in this paper. This robotic system is designed based on characteristics of retinal vascular bypass surgery and analysis of the surgical workspace in eyeball. A novel end-effector of two degrees of freedom is designed and a novel remote center of motion mechanism is adopted in the robot structure.The kinematics and the mapping relationship are then established, the gravity compensation control strategy and the hand tremor elimination algorithm are applied to achieve the high motion accuracy. The experiments on an artificial eyeball and an in vitro porcine eye are conducted, verifying the feasibility of this system.