Background:B-cell CLL/lymphoma 6(BCL6)is a transcriptional master regulator that represses more than 1200 potential target genes.Our previous study showed that a decline in blood production in runting and stunting syn...Background:B-cell CLL/lymphoma 6(BCL6)is a transcriptional master regulator that represses more than 1200 potential target genes.Our previous study showed that a decline in blood production in runting and stunting syndrome(RSS)affected sex-linked dwarf(SLD)chickens compared to SLD chickens.However,the association between BCL6 gene and hematopoietic function remains unknown in chickens.Methods:In this study,we used RSS affected SLD(RSS-SLD)chickens,SLD chickens and normal chickens as research object and overexpression of BCL6 in hematopoietic stem cells(HSCs),to investigate the effect of the BCL6 on differentiation and development of HSCs.Results:The results showed that comparison of RSS-SLD chickens with SLD chickens,the BCL6 was highly expressed in RSS-SLD chickens bone marrow.The bone marrow of RSS-SLD chickens was exhausted and red bone marrow was largely replaced by yellow bone marrow,bone density was reduced,and the levels of immature erythrocytes in peripheral blood were increased.At the same time,the hematopoietic function of HSCs decreased in RSS-SLD chickens,which was manifested by a decrease in the hematopoietic growth factors(HGFs)EPO,SCF,TPO,and IL-3,as well as hemoglobinα1 and hemoglobinβexpression.Moreover,mitochondrial function in the HSCs of RSS-SLD chickens was damaged,including an increase in ROS production,decrease in ATP concentration,and decrease in mitochondrial membrane potential(ΔΨm).The same results were also observed in SLD chickens compared with normal chickens;however,the symptoms were more serious in RSS-SLD chickens.Additionally,after overexpression of the BCL6 in primary HSCs,the secretion of HGFs(EPO,SCF,TPO and IL-3)was inhibited and the expression of hemoglobinα1 and hemoglobinβwas decreased.However,cell proliferation was accelerated,apoptosis was inhibited,and the HSCs entered a cancerous state.The function of mitochondria was also abnormal,ROS production was decreased,and ATP concentration andΔΨm were increased,which was related to the inhibition of apoptosis of stem cells.Conclusions:Taken together,we conclude that the high expression of BCL6 inhibits the differentiation and development of HSCs by affecting mitochondrial function,resulting in impaired growth and development of chickens.Moreover,the abnormal expression of BCL6 might be a cause of the clinical manifestations of chicken comb,pale skin,stunted growth and development,and the tendency to appear RSS in SLD chickens.展开更多
Limited to the structure of traditional light‐emitting devices,electronic devices that can directly convert machine language into human visual information without introducing any back‐end circuit are still not easy ...Limited to the structure of traditional light‐emitting devices,electronic devices that can directly convert machine language into human visual information without introducing any back‐end circuit are still not easy to achieve.Based on a specially designed three‐phase co‐planar electrode structure,a new type of three‐phase alternating current driven organic light‐emitting device with the integration of emission and control functions,full‐color tunability and simple device structure is demonstrated in this study.We integrate the light‐emitting function of color‐tunable light‐emitting devices and the switching of three triodes in a single three phase organic light‐emitting device.The state control of luminous color and luminance intensity merely requires the introduction of a kind of machine language,that is an easy‐to‐program 6‐bit binary number coded digital signals.The color adjustable area covers 66%of the color triangle of the National Television System Committee.Such simple and easy‐to‐integrate light‐emitting system has great potential applications in the next‐generation man‐machine interface.展开更多
Herein,we propose a new strategy to develop air-stable n-type organic semiconductors with non-classical thiophene aromatic diimide derivatives by replacing aromatic naphthalene with a heteroaromatic isothianaphthene c...Herein,we propose a new strategy to develop air-stable n-type organic semiconductors with non-classical thiophene aromatic diimide derivatives by replacing aromatic naphthalene with a heteroaromatic isothianaphthene core.We designed and successfully synthesized the isothianaphthene core based diimide material,N,N′-bis(n-hexyl)isothianaphthene-2,3,6,7-tetracarboxylic acid diimide(BTDI-C6)as an n-type semiconductor.Compared to N,N′-bis(n-hexyl)naphthalene-1,4,5,8-tetracarboxylic acid diimide(NDI-C6),BTDI-C6 possesses a deeper LUMO energy level of-4.21 eV,which is 0.32 eV lower than that of NDI-C6.Both molecular modelling and experimental results elucidated that organic thin film transistors(OTFTs)based on both of these materials exhibit comparable mobilities;however,the threshold voltage of BTDI-C6 based device(+7.5 V)is significantly lower than that of NDI-C6 based counterpart(+34V).Moreover,the low-lying LUMO energy level of BTDI-C6 ensures excellent air-stability which is further validated by the device performance.In addition,BTDI-C6 shows high luminescence while NDI-C6 is not luminescent at all in solution,which reveals the potential application of our newly synthesized material in n-type light-emitting transistors.展开更多
Organic field-effect transistors(OFETs)are of the core units in organic electronic circuits,and the performance of OFETs replies critically on the properties of their dielectric layers.Owing to the intrinsic flexibili...Organic field-effect transistors(OFETs)are of the core units in organic electronic circuits,and the performance of OFETs replies critically on the properties of their dielectric layers.Owing to the intrinsic flexibility and natural compatibility with other organic components,organic polymers,such as poly(vinyl alcohol)(PVA),have emerged as highly interesting dielectric materials for OFETs.However,unsatisfactory issues,such as hysteresis,high subthreshold swing,and low effective carrier mobility,still considerably limit the practical applications of the polymer-dielectric OFETs for high-speed,low-voltage flexible organic circuits.This work develops a new approach of using supercritical CO_(2) fluid(SCCO_(2))treatment on PVA dielectrics to achieve remarkably high-performance polymer-dielectric OFETs.The SCCO_(2) treatment is able to completely eliminate the hysteresis in the transfer characteristics of OFETs,and it can also significantly reduce the device subthreshold slope to 0._(2)5 V/dec and enhance the saturation regime carrier mobility to 30.2 cm^(2) V^(-1) s^(-1),of which both the numbers are remarkable for flexible polymer-dielectric OFETs.It is further demonstrated that,coupling with an organic light-emitting diode(OLED),the SCCO_(2)-treated OFET is able to function very well under fast switching speed,which indicates that an excellent switching behavior of polymer-dielectric OFETs can be enabled by this SCCO_(2) approach.Considering the broad and essential applications of OFETs,we envision that this SCCO_(2) technology will have a very broad spectrum of applications for organic electronics,especially for high refresh rate and low-voltage flexible display devices.展开更多
Organic phototransistors(OPTs),compared to traditional inorganic counterparts,have attracted a great deal of interest because of their inherent flexibility,light-weight,easy and low-cost fabrication,and are considered...Organic phototransistors(OPTs),compared to traditional inorganic counterparts,have attracted a great deal of interest because of their inherent flexibility,light-weight,easy and low-cost fabrication,and are considered as potential candidates for next-generation wearable electronics.Currently,significant advances have been made in OPTs with the development of new organic semiconductors and optimization of device fabrication protocols.Among various types of OPTs,small molecule organic single crystal phototransistors(OSCPTs)standout because of their exciting features,such as long exciton diffusion length and high charge carrier mobility relative to organic thinfilm phototransistors.In this review,a brief introduction to device architectures,working mechanisms and figure of merits for OPTs is presented.We then overview recent approaches employed and achievements made for the development of OSCPTs.Finally,we spotlight potential future directions to tackle the existing challenges in this field and accelerate the advancement of OSCPTs towards practical applications.展开更多
基金This work was supported by grants from the Key-Area Research and Development Program of Guangdong Province(Grant No.2020B020222002)the Guangdong Provincial Promotion Project on Preservation and Utilization of Local Breed of Livestock and Poultry,National Natural Science Foundation of China(Grant No.31401046)+1 种基金the China Agriculture Research System(CARS-41-G03)Guangdong Youth Talent Project.
文摘Background:B-cell CLL/lymphoma 6(BCL6)is a transcriptional master regulator that represses more than 1200 potential target genes.Our previous study showed that a decline in blood production in runting and stunting syndrome(RSS)affected sex-linked dwarf(SLD)chickens compared to SLD chickens.However,the association between BCL6 gene and hematopoietic function remains unknown in chickens.Methods:In this study,we used RSS affected SLD(RSS-SLD)chickens,SLD chickens and normal chickens as research object and overexpression of BCL6 in hematopoietic stem cells(HSCs),to investigate the effect of the BCL6 on differentiation and development of HSCs.Results:The results showed that comparison of RSS-SLD chickens with SLD chickens,the BCL6 was highly expressed in RSS-SLD chickens bone marrow.The bone marrow of RSS-SLD chickens was exhausted and red bone marrow was largely replaced by yellow bone marrow,bone density was reduced,and the levels of immature erythrocytes in peripheral blood were increased.At the same time,the hematopoietic function of HSCs decreased in RSS-SLD chickens,which was manifested by a decrease in the hematopoietic growth factors(HGFs)EPO,SCF,TPO,and IL-3,as well as hemoglobinα1 and hemoglobinβexpression.Moreover,mitochondrial function in the HSCs of RSS-SLD chickens was damaged,including an increase in ROS production,decrease in ATP concentration,and decrease in mitochondrial membrane potential(ΔΨm).The same results were also observed in SLD chickens compared with normal chickens;however,the symptoms were more serious in RSS-SLD chickens.Additionally,after overexpression of the BCL6 in primary HSCs,the secretion of HGFs(EPO,SCF,TPO and IL-3)was inhibited and the expression of hemoglobinα1 and hemoglobinβwas decreased.However,cell proliferation was accelerated,apoptosis was inhibited,and the HSCs entered a cancerous state.The function of mitochondria was also abnormal,ROS production was decreased,and ATP concentration andΔΨm were increased,which was related to the inhibition of apoptosis of stem cells.Conclusions:Taken together,we conclude that the high expression of BCL6 inhibits the differentiation and development of HSCs by affecting mitochondrial function,resulting in impaired growth and development of chickens.Moreover,the abnormal expression of BCL6 might be a cause of the clinical manifestations of chicken comb,pale skin,stunted growth and development,and the tendency to appear RSS in SLD chickens.
基金supported by the Key‐Area Research and Development Program of Guangdong Province(No.2019B010924003)Guangdong Basic and Applied Basic Research Foundation(No.2020B1515120030,No.2020A1515010449)+3 种基金Natural Science Basic Research Program of Shaanxi(Program No.2019JLP‐11)Shenzhen Fundamental Research Program(JCYJ20190808182803805)Shenzhen OLED Materials and Devices Technology Engineering Research Center([2018]1410)Shenzhen Key Laboratory of Shenzhen Science and Technology(ZDSYS_(2)0140509094114164).
文摘Limited to the structure of traditional light‐emitting devices,electronic devices that can directly convert machine language into human visual information without introducing any back‐end circuit are still not easy to achieve.Based on a specially designed three‐phase co‐planar electrode structure,a new type of three‐phase alternating current driven organic light‐emitting device with the integration of emission and control functions,full‐color tunability and simple device structure is demonstrated in this study.We integrate the light‐emitting function of color‐tunable light‐emitting devices and the switching of three triodes in a single three phase organic light‐emitting device.The state control of luminous color and luminance intensity merely requires the introduction of a kind of machine language,that is an easy‐to‐program 6‐bit binary number coded digital signals.The color adjustable area covers 66%of the color triangle of the National Television System Committee.Such simple and easy‐to‐integrate light‐emitting system has great potential applications in the next‐generation man‐machine interface.
基金supported by Shenzhen Science and Technology (JCYJ20170412151139619)Shenzhen Engineering Laboratory (Shenzhen development and reform commission [2016]1592)+1 种基金Guangdong Key Research Project (2019B010924003), Guangdong International Science Collaboration Base (2019A050505003)Shenzhen Peacock Plan (KQTD2014062714543296)
文摘Herein,we propose a new strategy to develop air-stable n-type organic semiconductors with non-classical thiophene aromatic diimide derivatives by replacing aromatic naphthalene with a heteroaromatic isothianaphthene core.We designed and successfully synthesized the isothianaphthene core based diimide material,N,N′-bis(n-hexyl)isothianaphthene-2,3,6,7-tetracarboxylic acid diimide(BTDI-C6)as an n-type semiconductor.Compared to N,N′-bis(n-hexyl)naphthalene-1,4,5,8-tetracarboxylic acid diimide(NDI-C6),BTDI-C6 possesses a deeper LUMO energy level of-4.21 eV,which is 0.32 eV lower than that of NDI-C6.Both molecular modelling and experimental results elucidated that organic thin film transistors(OTFTs)based on both of these materials exhibit comparable mobilities;however,the threshold voltage of BTDI-C6 based device(+7.5 V)is significantly lower than that of NDI-C6 based counterpart(+34V).Moreover,the low-lying LUMO energy level of BTDI-C6 ensures excellent air-stability which is further validated by the device performance.In addition,BTDI-C6 shows high luminescence while NDI-C6 is not luminescent at all in solution,which reveals the potential application of our newly synthesized material in n-type light-emitting transistors.
基金This work was financially supported by the Guangdong Natural Science Funds for Distinguished Young Scholar(2015A030306036)Shenzhen Science and Technology Research Grant(JCYJ20180302150354741)Key-Area Research and Development Program of Guangdong Province(2019B010924003).
文摘Organic field-effect transistors(OFETs)are of the core units in organic electronic circuits,and the performance of OFETs replies critically on the properties of their dielectric layers.Owing to the intrinsic flexibility and natural compatibility with other organic components,organic polymers,such as poly(vinyl alcohol)(PVA),have emerged as highly interesting dielectric materials for OFETs.However,unsatisfactory issues,such as hysteresis,high subthreshold swing,and low effective carrier mobility,still considerably limit the practical applications of the polymer-dielectric OFETs for high-speed,low-voltage flexible organic circuits.This work develops a new approach of using supercritical CO_(2) fluid(SCCO_(2))treatment on PVA dielectrics to achieve remarkably high-performance polymer-dielectric OFETs.The SCCO_(2) treatment is able to completely eliminate the hysteresis in the transfer characteristics of OFETs,and it can also significantly reduce the device subthreshold slope to 0._(2)5 V/dec and enhance the saturation regime carrier mobility to 30.2 cm^(2) V^(-1) s^(-1),of which both the numbers are remarkable for flexible polymer-dielectric OFETs.It is further demonstrated that,coupling with an organic light-emitting diode(OLED),the SCCO_(2)-treated OFET is able to function very well under fast switching speed,which indicates that an excellent switching behavior of polymer-dielectric OFETs can be enabled by this SCCO_(2) approach.Considering the broad and essential applications of OFETs,we envision that this SCCO_(2) technology will have a very broad spectrum of applications for organic electronics,especially for high refresh rate and low-voltage flexible display devices.
基金the Key-Area Research and Development Program of Guangdong Province(No.2019B010924003)Guangdong Basic and Applied Basic Research Foundation(No.2020B1515120030)+5 种基金the Shenzhen Peacock Plan(No.KQTD2014062714543296)the Shenzhen Science and Technology Research Grant(No.JCYJ20180302153514509)the Guangdong International Science Collaboration Base(No.2019A050505003)the Shenzhen Engineering Research Center(Shenzhen Development and Reform Commission[2018]1410)the Shenzhen Key Laboratory of Organic Optoelectromagnetic Functional Materials(No.ZDSYS20140509094114164)the Natural Science Basic Research Program of Shaanxi(Program No.2019JLP11).
文摘Organic phototransistors(OPTs),compared to traditional inorganic counterparts,have attracted a great deal of interest because of their inherent flexibility,light-weight,easy and low-cost fabrication,and are considered as potential candidates for next-generation wearable electronics.Currently,significant advances have been made in OPTs with the development of new organic semiconductors and optimization of device fabrication protocols.Among various types of OPTs,small molecule organic single crystal phototransistors(OSCPTs)standout because of their exciting features,such as long exciton diffusion length and high charge carrier mobility relative to organic thinfilm phototransistors.In this review,a brief introduction to device architectures,working mechanisms and figure of merits for OPTs is presented.We then overview recent approaches employed and achievements made for the development of OSCPTs.Finally,we spotlight potential future directions to tackle the existing challenges in this field and accelerate the advancement of OSCPTs towards practical applications.