期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Oxygen vacancies enriched nickel cobalt based nanoflower cathodes: Mechanism and application of the enhanced energy storage 被引量:2
1
作者 Jiahui Ye Xingwu Zhai +10 位作者 Long Chen Wen Guo Tiantian Gu Yulin Shi Juan Hou Fei Han Yi Liu changchun fan Gang Wang Shanglong Peng Xuhong Guo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第11期252-261,I0006,共11页
The rational design of oxygen vacancies and electronic microstructures of electrode materials for energy storage devices still remains a challenge. Herein, we synthesize nickel cobalt-based oxides nanoflower arrays as... The rational design of oxygen vacancies and electronic microstructures of electrode materials for energy storage devices still remains a challenge. Herein, we synthesize nickel cobalt-based oxides nanoflower arrays assembled with nanowires grown on Ni foam via the hydrothermal process followed annealing process in air and argon atmospheres respectively. It is found that the annealing atmosphere has a vital influence on the oxygen vacancies and electronic microstructures of resulting NiCo_(2)O_(4) (NCO-Air) and CoNiO_(2) (NCO-Ar) products, which NCO-Ar has more oxygen vacancies and larger specific surface area of 163.48 m^(2)/g. The density functional theory calculation reveals that more oxygen vacancies can provide more electrons to adsorb –OH free anions resulting in superior electrochemical energy storage performance. Therefore, the assembled asymmetric supercapacitor of NCO-Ar//active carbon delivers an excellent energy density of 112.52 Wh/kg at a power density of 558.73 W/kg and the fabricated NCO-Ar//Zn battery presents the specific capacity of 180.20 mAh/g and energy density of 308.14 Wh/kg. The experimental measurement and theoretical calculation not only provide a facile strategy to construct flower-like mesoporous architectures with massive oxygen vacancies, but also demonstrate that NCO-Ar is an ideal electrode material for the next generation of energy storage devices. 展开更多
关键词 NiCo_(2)O_(4) CoNiO_(2) SUPERCAPACITOR Oxygen vacancy defects Flower-like microstructure
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部