Dear Editor,This letter examines the stability issue of generalized neural networks(GNNs) with time-varying delay based on a novel reciprocally convex combination(RCC). By considering a new matrix polynomial, the prop...Dear Editor,This letter examines the stability issue of generalized neural networks(GNNs) with time-varying delay based on a novel reciprocally convex combination(RCC). By considering a new matrix polynomial, the proposed novel reciprocally convex method leads to a tight bound for integral inequality combination and encompasses several existing approaches as special cases.展开更多
Bilateral teleoperation system is referred to as a promising technology to extend human actions and intelligence to manipulating objects remotely.For the tracking control of teleoperation systems,velocity measurements...Bilateral teleoperation system is referred to as a promising technology to extend human actions and intelligence to manipulating objects remotely.For the tracking control of teleoperation systems,velocity measurements are necessary to provide feedback information.However,due to hardware technology and cost constraints,the velocity measurements are not always available.In addition,the time-varying communication delay makes it challenging to achieve tracking task.This paper provides a solution to the issue of real-time tracking for teleoperation systems,subjected to unavailable velocity signals and time-varying communication delays.In order to estimate the velocity information,immersion and invariance(I&I)technique is employed to develop an exponential stability velocity observer.For the proposed velocity observer,a linear relationship between position and observation state is constructed,through which the need of solving partial differential and certain integral equations can be avoided.Meanwhile,the mean value theorem is exploited to separate the observation error terms,and hence,all functions in our observer can be analytically expressed.With the estimated velocity information,a slave-torque feedback control law is presented.A novel Lyapunov-Krasovskii functional is constructed to establish asymptotic tracking conditions.In particular,the relationship between the controller design parameters and the allowable maximum delay values is provided.Finally,simulation and experimental results reveal that the proposed velocity observer and controller can guarantee that the observation errors and tracking error converge to zero.展开更多
This paper considers the problem of delay-dependent exponential stability in mean square for stochastic systems with polytopic-type uncertainties and time-varying delay. Applying the descriptor model transformation an...This paper considers the problem of delay-dependent exponential stability in mean square for stochastic systems with polytopic-type uncertainties and time-varying delay. Applying the descriptor model transformation and introducing free weighting matrices, a new type of Lyapunov-Krasovskii functional is constructed based on linear matrix inequalities (LMIs), and some new delay-dependent criteria are obtained. These criteria include the delay-independent/rate- dependent and delay-dependent/rate-independent exponential stability criteria. These new criteria are less conservative than existing ones. Numerical examples demonstrate that these new criteria are effective and are an improvement over existing ones.展开更多
基金supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science,Information and Communications Technology(ICT),and Future Planning(2020 R1A2C2005709)the National Natural Science Foundation of China(618255304)the Key Project of Natural Science Foundation of Hebei Province(F2021203054)。
文摘Dear Editor,This letter examines the stability issue of generalized neural networks(GNNs) with time-varying delay based on a novel reciprocally convex combination(RCC). By considering a new matrix polynomial, the proposed novel reciprocally convex method leads to a tight bound for integral inequality combination and encompasses several existing approaches as special cases.
基金supported in part by the National Science Foundation(NSF)of China(61973263)the National Natural Science Foundation of China Outstanding Youth Fund(62222314)+5 种基金Youth Talent Program of Hebei(BJ2020031,BJ2019047)the Excellent Youth Project for NSF of Hebei Province(F2021203056)the Distinguished Young Foundation of Hebei Province(F2022203001)the Central Guidance Local Foundation of Hebei Province(226Z3201G)the Three-Three-Three Foundation of Hebei Province(C20221019)the Innovation Capability Improvement Plan Project of Hebei Province(22567626H)。
文摘Bilateral teleoperation system is referred to as a promising technology to extend human actions and intelligence to manipulating objects remotely.For the tracking control of teleoperation systems,velocity measurements are necessary to provide feedback information.However,due to hardware technology and cost constraints,the velocity measurements are not always available.In addition,the time-varying communication delay makes it challenging to achieve tracking task.This paper provides a solution to the issue of real-time tracking for teleoperation systems,subjected to unavailable velocity signals and time-varying communication delays.In order to estimate the velocity information,immersion and invariance(I&I)technique is employed to develop an exponential stability velocity observer.For the proposed velocity observer,a linear relationship between position and observation state is constructed,through which the need of solving partial differential and certain integral equations can be avoided.Meanwhile,the mean value theorem is exploited to separate the observation error terms,and hence,all functions in our observer can be analytically expressed.With the estimated velocity information,a slave-torque feedback control law is presented.A novel Lyapunov-Krasovskii functional is constructed to establish asymptotic tracking conditions.In particular,the relationship between the controller design parameters and the allowable maximum delay values is provided.Finally,simulation and experimental results reveal that the proposed velocity observer and controller can guarantee that the observation errors and tracking error converge to zero.
基金partially supported by National Natural Science Foundation of China(61290322,61273222,61322303,61473248,61403335)Hebei Province Applied Basis Research Project(15967629D)Top Talents Project of Hebei Province and Yanshan University Project(13LGA020)
基金supported by the National Natural Science Foundation of China (No.60525303, 60604004, 60704009) Natural Science Foundationof Hebei Province, China (No.F2005000390, F2006000270)
文摘This paper considers the problem of delay-dependent exponential stability in mean square for stochastic systems with polytopic-type uncertainties and time-varying delay. Applying the descriptor model transformation and introducing free weighting matrices, a new type of Lyapunov-Krasovskii functional is constructed based on linear matrix inequalities (LMIs), and some new delay-dependent criteria are obtained. These criteria include the delay-independent/rate- dependent and delay-dependent/rate-independent exponential stability criteria. These new criteria are less conservative than existing ones. Numerical examples demonstrate that these new criteria are effective and are an improvement over existing ones.