The consumption of cut roses(Rosa hybrida)has always ranked first in the world.However,it is vulnerable to rapid petal and leaf wilting due to leaf stomatal water loss,which seriously affects its ornamental quality an...The consumption of cut roses(Rosa hybrida)has always ranked first in the world.However,it is vulnerable to rapid petal and leaf wilting due to leaf stomatal water loss,which seriously affects its ornamental quality and economic value.Stomatal movement,a key in plant physiological processes,is influenced by potassium and nitrate.Advancing comprehension of its physiological and molecular mechanism holds promise for preserving the freshness of cut roses.This study observed the impacts of different concentrations of KNO_(3) vase treatments on stomatal opening and water loss in cut rose‘Carola’leaves,as well as their transcriptional responses to KNO_(3).Water loss rates were influenced by KNO_(3) concentrations,with the 25 and 75 mmol/L treatments exhibiting the highest water loss rates.The stomatal aperture reached its widest value when treated with 75 mmol/L KNO_(3).Transcriptional sequencing analysis was performed to identify differentially expressed genes(DEGs)of which 5456 were up-regulated,and 6607 were down-regulated associated with photosynthesis,starch and sucrose metabolism,metabolic pathways,plant-pathogen interaction,plant hormone signal transduction,and related pathways.246 DEGs were selected related to response to KNO_(3) treatment,of which gene ontology(GO)enrichment were nitrate and terpenoid metabolism,ion transport,and response to stimuli.Further heatmap analysis revealed that several genes related to nitrate transport a metabolism,K+transport,vacuoles,and aquaporin were in close association with the response to KNO_(3) treatment.Weighted gene co-expression network analysis(WGCNA)revealed that hub genes,including LAX2,TSJT1,and SCPL34 were identified in turquoise,black,and darkgreen module.Transcription factors such as NAC021,CDF3,ERF053,ETR2,and ARF6 exhibited regulatory roles in the response to KNO_(3) treatment under light conditions.These findings provide valuable insights into the physiological and molecular mechanisms underlying the response of cut rose leaves to KNO_(3) treatment.展开更多
Lithium-rich oxide is one of the most promising cathodes that meet high energy density requirement for batteries of the future, but its phase transformation from layer to spinel structure caused by the lattice instabi...Lithium-rich oxide is one of the most promising cathodes that meet high energy density requirement for batteries of the future, but its phase transformation from layer to spinel structure caused by the lattice instability presents severe challenge to cycling stability and the actually accessible capacity. The currently available approaches to suppress this undesired irreversible process often resort to limit the high voltages that lithium-rich oxide is exposed to. However, cycling stability thus improved is at the expense of the eventual energy output. In this work, we identified a new mechanism that is directly responsible for the lithium-rich oxide phase transformation and established a clear correlation between the successive consumption of Li+on anode due to incessant interphase repairing and the over-delithiation of lithium-rich oxide cathode. This new mechanism enables a simple but effective solution to the cathode degradation, in which an electrolyte additive is used to build a dense and protective interphase on anode with the intention to minimize Li depletion at cathode. The application of this new interphase effectively suppresses both electrolyte decomposition at anode and the phase transformation of lithium-rich oxide cathode, leading to high capacity and cycling stability.展开更多
基金supported by the National Natural Science Foundation of China (Nos.32002069 and 31972439)the Basic and Applied Research Project of Guangdong Province (2020A1515110961).
文摘The consumption of cut roses(Rosa hybrida)has always ranked first in the world.However,it is vulnerable to rapid petal and leaf wilting due to leaf stomatal water loss,which seriously affects its ornamental quality and economic value.Stomatal movement,a key in plant physiological processes,is influenced by potassium and nitrate.Advancing comprehension of its physiological and molecular mechanism holds promise for preserving the freshness of cut roses.This study observed the impacts of different concentrations of KNO_(3) vase treatments on stomatal opening and water loss in cut rose‘Carola’leaves,as well as their transcriptional responses to KNO_(3).Water loss rates were influenced by KNO_(3) concentrations,with the 25 and 75 mmol/L treatments exhibiting the highest water loss rates.The stomatal aperture reached its widest value when treated with 75 mmol/L KNO_(3).Transcriptional sequencing analysis was performed to identify differentially expressed genes(DEGs)of which 5456 were up-regulated,and 6607 were down-regulated associated with photosynthesis,starch and sucrose metabolism,metabolic pathways,plant-pathogen interaction,plant hormone signal transduction,and related pathways.246 DEGs were selected related to response to KNO_(3) treatment,of which gene ontology(GO)enrichment were nitrate and terpenoid metabolism,ion transport,and response to stimuli.Further heatmap analysis revealed that several genes related to nitrate transport a metabolism,K+transport,vacuoles,and aquaporin were in close association with the response to KNO_(3) treatment.Weighted gene co-expression network analysis(WGCNA)revealed that hub genes,including LAX2,TSJT1,and SCPL34 were identified in turquoise,black,and darkgreen module.Transcription factors such as NAC021,CDF3,ERF053,ETR2,and ARF6 exhibited regulatory roles in the response to KNO_(3) treatment under light conditions.These findings provide valuable insights into the physiological and molecular mechanisms underlying the response of cut rose leaves to KNO_(3) treatment.
基金supported by the National Natural Science Foundation of China(Grant No.21872058)the Key Project of Science and Technology in Guangdong Province(2017A010106006)
文摘Lithium-rich oxide is one of the most promising cathodes that meet high energy density requirement for batteries of the future, but its phase transformation from layer to spinel structure caused by the lattice instability presents severe challenge to cycling stability and the actually accessible capacity. The currently available approaches to suppress this undesired irreversible process often resort to limit the high voltages that lithium-rich oxide is exposed to. However, cycling stability thus improved is at the expense of the eventual energy output. In this work, we identified a new mechanism that is directly responsible for the lithium-rich oxide phase transformation and established a clear correlation between the successive consumption of Li+on anode due to incessant interphase repairing and the over-delithiation of lithium-rich oxide cathode. This new mechanism enables a simple but effective solution to the cathode degradation, in which an electrolyte additive is used to build a dense and protective interphase on anode with the intention to minimize Li depletion at cathode. The application of this new interphase effectively suppresses both electrolyte decomposition at anode and the phase transformation of lithium-rich oxide cathode, leading to high capacity and cycling stability.