期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
DM Code Key Point Detection Algorithm Based on CenterNet
1
作者 Wei Wang Xinyao Tang +2 位作者 Kai Zhou Chunhui Zhao changfa liu 《Computers, Materials & Continua》 SCIE EI 2023年第11期1911-1928,共18页
Data Matrix(DM)codes have been widely used in industrial production.The reading of DM code usually includes positioning and decoding.Accurate positioning is a prerequisite for successful decoding.Traditional image pro... Data Matrix(DM)codes have been widely used in industrial production.The reading of DM code usually includes positioning and decoding.Accurate positioning is a prerequisite for successful decoding.Traditional image processing methods have poor adaptability to pollution and complex backgrounds.Although deep learning-based methods can automatically extract features,the bounding boxes cannot entirely fit the contour of the code.Further image processing methods are required for precise positioning,which will reduce efficiency.Because of the above problems,a CenterNet-based DM code key point detection network is proposed,which can directly obtain the four key points of the DM code.Compared with the existing methods,the degree of fitness is higher,which is conducive to direct decoding.To further improve the positioning accuracy,an enhanced loss function is designed,including DM code key point heatmap loss,standard DM code projection loss,and polygon Intersection-over-Union(IoU)loss,which is beneficial for the network to learn the spatial geometric characteristics of DM code.The experiment is carried out on the self-made DM code key point detection dataset,including pollution,complex background,small objects,etc.,which uses the Average Precision(AP)of the common object detection metric as the evaluation metric.AP reaches 95.80%,and Frames Per Second(FPS)gets 88.12 on the test set of the proposed dataset,which can achieve real-time performance in practical applications. 展开更多
关键词 DM code key point detection CenterNet object detection enhanced loss function
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部