Microorganisms are fundamental for the functioning of marine ecosystems and are involved in the decomposition of organic matter, transformation of nutrients and circulation of biologically-important chemicals. Based o...Microorganisms are fundamental for the functioning of marine ecosystems and are involved in the decomposition of organic matter, transformation of nutrients and circulation of biologically-important chemicals. Based on the complexity of the natural geographic characteristics of the Changjiang River Estuary, the geographic distribution of sedimentary microorganisms and the causes of this distribution are largely unexplored. In this work, the surface sediment samples from the adjacent sea area of the Changjiang River Estuary were collected. Their prokaryotic diversity was examined by high-throughput sequencing technology, and the environmental factors of the bacterial community were investigated. The results indicated that the distribution of prokaryotic communities in the sediments of the study areas showed obvious spatial heterogeneity. The sampling sequences divided the sample regions into three distinct clusters. Each geographic region had a unique community structure, although Proteobacteria, Bacteroidota, Desulfobacterota, Acidobacteriota, and Actinobacteriota all existed in these three branches. Canonical correspondence analysis demonstrated that prokaryotic diversity and community distribution were significantly correlated with the geographic location of sediment, seawater depth, and in particular, nutrient content(e.g., total phosphorus, total organic carbon and dissolved oxygen). Moreover, it was found for the first time that the metal ions obviously affected the composition and distribution of the prokaryotic community in this area. In general, this work provides new insights into the structural characteristics and driving factors of prokaryotic communities under the background of the ever-changing Changjiang River Estuary.展开更多
We studied the effects of expected end-of-the-century p CO_2(1000 ppm)on the photosynthetic performance of a coastal marine cyanobacterium Synechococcus sp.PCC7002 during the lag,exponential,and stationary growth phas...We studied the effects of expected end-of-the-century p CO_2(1000 ppm)on the photosynthetic performance of a coastal marine cyanobacterium Synechococcus sp.PCC7002 during the lag,exponential,and stationary growth phases.Elevated p CO_2significantly stimulated growth,and enhanced the maximum cell density during the stationary phase.Under ambient p CO_2conditions,the lag phase lasted for 6 days,while elevated p CO_2shortened the lag phase to two days and extended the exponential phase by four days.The elevated p CO_2increased photosynthesis levels during the lag and exponential phases,but reduced them during the stationary phase.Moreover,the elevated p CO_2reduced the saturated growth light(Ik)and increased the light utilization efficiency(α)during the exponential and stationary phases,and elevated the phycobilisome:chlorophyll a(Chl a)ratio.Furthermore,the elevated p CO_2reduced the particulate organic carbon(POC):Chl a and particulate organic nitrogen(PON):Chl a ratios during the lag and stationary phases,but enhanced them during the exponential phase.Overall,Synechococcus showed differential physiological responses to elevated p CO_2during different growth phases,thus providing insight into previous studies that focused on only the exponential phase,which may have biased the results relative to the effects of elevated p CO_2in ecology or aquaculture.展开更多
基金The National Natural Science Foundation of China under contract Nos 32000074 and 42176130the Science and Technology Planning Project of Guangxi under contract No. AA21196002+4 种基金the Natural Science Foundation of Shandong Province under contract No. ZR2021MD044the Tai Mountain Industry Leading Talent of Shandong under contract No. 2019TSCYCX-06the Key Research and Development Program of Shandong Province under contract No. 2021TZXD008the Biosafety Research Program under contract No.20SWAQX04the Shandong Program of Pilot National Laboratory for Marine Science and Technology (Qingdao)under contract No. 2022QNLM030003-1。
文摘Microorganisms are fundamental for the functioning of marine ecosystems and are involved in the decomposition of organic matter, transformation of nutrients and circulation of biologically-important chemicals. Based on the complexity of the natural geographic characteristics of the Changjiang River Estuary, the geographic distribution of sedimentary microorganisms and the causes of this distribution are largely unexplored. In this work, the surface sediment samples from the adjacent sea area of the Changjiang River Estuary were collected. Their prokaryotic diversity was examined by high-throughput sequencing technology, and the environmental factors of the bacterial community were investigated. The results indicated that the distribution of prokaryotic communities in the sediments of the study areas showed obvious spatial heterogeneity. The sampling sequences divided the sample regions into three distinct clusters. Each geographic region had a unique community structure, although Proteobacteria, Bacteroidota, Desulfobacterota, Acidobacteriota, and Actinobacteriota all existed in these three branches. Canonical correspondence analysis demonstrated that prokaryotic diversity and community distribution were significantly correlated with the geographic location of sediment, seawater depth, and in particular, nutrient content(e.g., total phosphorus, total organic carbon and dissolved oxygen). Moreover, it was found for the first time that the metal ions obviously affected the composition and distribution of the prokaryotic community in this area. In general, this work provides new insights into the structural characteristics and driving factors of prokaryotic communities under the background of the ever-changing Changjiang River Estuary.
基金supported by the National Key Research and Development Program of China (Grant No. 2016YFA0601402)the China SOA Grant Associated with Task (Grant No. GASI-03-01-02-05)+1 种基金the CNOOC Zhanjiang Branch (Grant No. CNOOC-KJ 125 FZDXM 00 ZJ 001-2014)the National Natural Science Foundation of China (Grant Nos. 41606092 & 41676156)
文摘We studied the effects of expected end-of-the-century p CO_2(1000 ppm)on the photosynthetic performance of a coastal marine cyanobacterium Synechococcus sp.PCC7002 during the lag,exponential,and stationary growth phases.Elevated p CO_2significantly stimulated growth,and enhanced the maximum cell density during the stationary phase.Under ambient p CO_2conditions,the lag phase lasted for 6 days,while elevated p CO_2shortened the lag phase to two days and extended the exponential phase by four days.The elevated p CO_2increased photosynthesis levels during the lag and exponential phases,but reduced them during the stationary phase.Moreover,the elevated p CO_2reduced the saturated growth light(Ik)and increased the light utilization efficiency(α)during the exponential and stationary phases,and elevated the phycobilisome:chlorophyll a(Chl a)ratio.Furthermore,the elevated p CO_2reduced the particulate organic carbon(POC):Chl a and particulate organic nitrogen(PON):Chl a ratios during the lag and stationary phases,but enhanced them during the exponential phase.Overall,Synechococcus showed differential physiological responses to elevated p CO_2during different growth phases,thus providing insight into previous studies that focused on only the exponential phase,which may have biased the results relative to the effects of elevated p CO_2in ecology or aquaculture.