For conductors in the ballistic regime, electron-boundary scattering at the sample edge plays a dominant role in determining the transport performance, giving rise to many intriguing phenomena like low-field negative ...For conductors in the ballistic regime, electron-boundary scattering at the sample edge plays a dominant role in determining the transport performance, giving rise to many intriguing phenomena like low-field negative magnetoresistance effect. We systematically investigate the magneto-transport behaviors of BN-encapsulated graphene devices with narrow channel width W, wherein the bulk mean free path Lmfp can be very large and highly tunable. By comparing the magnetoresistance features and the amplitude of Lmfp in a large parameter space of temperature and carrier density, we reveal that the boundary-scattering-dominated negative magnetoresistance effect can still survive even when the ballistic ratio(Lmfp/W) is as low as 0.15. This striking value is much smaller than the expected value for achieving(quasi-) ballistic transport regime(Lmfp/W ≥ 1), and can be attributed to the ultra-low specularity of the sample edge of our graphene devices. These findings enrich our understanding of the effects of boundary scattering on channel transport, which is of vital importance for future designs of two-dimensional electronic devices with limited lateral sizes.展开更多
The Weyl semimetal has emerged as a new topologically nontrivial phase of matter,hosting low-energy excitations of massless Weyl fermions.Here,we present a comprehensive study of a type-ⅡWeyl semimetal WP2.Transport ...The Weyl semimetal has emerged as a new topologically nontrivial phase of matter,hosting low-energy excitations of massless Weyl fermions.Here,we present a comprehensive study of a type-ⅡWeyl semimetal WP2.Transport studies show a butterfly-like magnetoresistance at low temperature,reflecting the anisotropy of the electron Fermi surfaces.This four-lobed feature gradually evolves into a two-lobed variant with an increase in temperature,mainly due to the reduced relative contribution of electron Fermi surfaces compared to hole Fermi surfaces for magnetoresistance.Moreover,an angle-dependent Berry phase is also discovered,based on quantum oscillations,which is ascribed to the effective manipulation of extremal Fermi orbits by the magnetic field to feel nearby topological singularities in the momentum space.The revealed topological character and anisotropic Fermi surfaces of the WP2 substantially enrich the physical properties of Weyl semimetals,and show great promises in terms of potential topological electronic and Fermitronic device applications.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.92165201 and 11974324)the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0302800)+3 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDC07010000)the Anhui Initiative in Quantum Information Technologies(Grant No.AHY170000)the Hefei Science Center CAS(Grant No.2020HSC-UE014)the Fundamental Research Funds for the Central Universities(Grant No.WK3510000013)。
文摘For conductors in the ballistic regime, electron-boundary scattering at the sample edge plays a dominant role in determining the transport performance, giving rise to many intriguing phenomena like low-field negative magnetoresistance effect. We systematically investigate the magneto-transport behaviors of BN-encapsulated graphene devices with narrow channel width W, wherein the bulk mean free path Lmfp can be very large and highly tunable. By comparing the magnetoresistance features and the amplitude of Lmfp in a large parameter space of temperature and carrier density, we reveal that the boundary-scattering-dominated negative magnetoresistance effect can still survive even when the ballistic ratio(Lmfp/W) is as low as 0.15. This striking value is much smaller than the expected value for achieving(quasi-) ballistic transport regime(Lmfp/W ≥ 1), and can be attributed to the ultra-low specularity of the sample edge of our graphene devices. These findings enrich our understanding of the effects of boundary scattering on channel transport, which is of vital importance for future designs of two-dimensional electronic devices with limited lateral sizes.
基金Supported by the National Natural Science Foundation of China(Grant Nos.11974324,11804326,U1832151,and 11674296),the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDC07010000)the National Key Research and Development Program of China(Grant No.2017YFA0403600)+4 种基金the Anhui Initiative in Quantum Information Technologies(Grant No.AHY170000)the Hefei Science Center CAS(Grant No.2018HSC-UE014)the Jiangsu Provincial Science Foundation for Youth(Grant No.BK20170821)the National Natural Science Foundation of China for Youth(Grant No.11804160)the Anhui Provincial Natural Science Foundation(Grant No.1708085MF136)。
文摘The Weyl semimetal has emerged as a new topologically nontrivial phase of matter,hosting low-energy excitations of massless Weyl fermions.Here,we present a comprehensive study of a type-ⅡWeyl semimetal WP2.Transport studies show a butterfly-like magnetoresistance at low temperature,reflecting the anisotropy of the electron Fermi surfaces.This four-lobed feature gradually evolves into a two-lobed variant with an increase in temperature,mainly due to the reduced relative contribution of electron Fermi surfaces compared to hole Fermi surfaces for magnetoresistance.Moreover,an angle-dependent Berry phase is also discovered,based on quantum oscillations,which is ascribed to the effective manipulation of extremal Fermi orbits by the magnetic field to feel nearby topological singularities in the momentum space.The revealed topological character and anisotropic Fermi surfaces of the WP2 substantially enrich the physical properties of Weyl semimetals,and show great promises in terms of potential topological electronic and Fermitronic device applications.