期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Towards engineering in memristors for emerging memory and neuromorphic computing: A review 被引量:3
1
作者 Andrey S.Sokolov Haider Abbas +1 位作者 Yawar Abbas changhwan choi 《Journal of Semiconductors》 EI CAS CSCD 2021年第1期33-61,共29页
Resistive random-access memory(RRAM),also known as memristors,having a very simple device structure with two terminals,fulfill almost all of the fundamental requirements of volatile memory,nonvolatile memory,and neuro... Resistive random-access memory(RRAM),also known as memristors,having a very simple device structure with two terminals,fulfill almost all of the fundamental requirements of volatile memory,nonvolatile memory,and neuromorphic characteristics.Its memory and neuromorphic behaviors are currently being explored in relation to a range of materials,such as biological materials,perovskites,2D materials,and transition metal oxides.In this review,we discuss the different electrical behaviors exhibited by RRAM devices based on these materials by briefly explaining their corresponding switching mechanisms.We then discuss emergent memory technologies using memristors,together with its potential neuromorphic applications,by elucidating the different material engineering techniques used during device fabrication to improve the memory and neuromorphic performance of devices,in areas such as ION/IOFF ratio,endurance,spike time-dependent plasticity(STDP),and paired-pulse facilitation(PPF),among others.The emulation of essential biological synaptic functions realized in various switching materials,including inorganic metal oxides and new organic materials,as well as diverse device structures such as single-layer and multilayer hetero-structured devices,and crossbar arrays,is analyzed in detail.Finally,we discuss current challenges and future prospects for the development of inorganic and new materials-based memristors. 展开更多
关键词 RRAM MEMRISTOR emerging memories neuromorphic computing electronic synapse resistive switching memristor engineering
下载PDF
Thickness-dependent monochalcogenide GeSe-based CBRAM for memory and artificial electronic synapses
2
作者 Asif Ali Haider Abbas +4 位作者 Muhammad Hussain Syed Hassan Abbas Jaffery Sajjad Hussain changhwan choi Jongwan Jung 《Nano Research》 SCIE EI CSCD 2022年第3期2263-2277,共15页
Investigating the promising chalcogenide materials for the development of memory and advanced neuromorphic computing applications is a critical step in realizing electronic memory and synaptic devices that can efficie... Investigating the promising chalcogenide materials for the development of memory and advanced neuromorphic computing applications is a critical step in realizing electronic memory and synaptic devices that can efficiently emulate biological synaptic functions.However,the assessment of monochalcogenide materials for the fabrication of highly scalable memory and electronic synaptic devices that can accurately mimic synaptic functions remain limited.In the present study,we investigated the thickness-dependent resistive switching(RS)behavior of conductive bridge random access memory(CBRAM)based on a monochalcogenide GeSe switching medium for its possible application in high-performance memory and electronic synapses.GeSe thin films of different thicknesses(6,13,24,35,47,and 56 nm)were deposited via sputtering to fabricate CBRAM devices with a stacking sequence of Ag/GeSe/Pt/Ti/SiO_(2).The devices exhibited compliance current(CC)-free and electroforming-free RS with highly stable endurance and retention characteristics with no major degradation.All devices with a thickness of 6 nm had a low-resistance state(LRS),which required an initial reset to ensure reliable switching cycles.The devices with a thickness of 47 nm and above exhibited the co-existence of unipolar resistive switching(U-RS)and bipolar resistive switching(B-RS)with the CC-controlled transition between the two switching behaviors.Multilevel resistance states in the 24-nm device between a high-resistance state(HRS)and an LRS were achieved by controlling the set-CC(from 5 mA to CC-free)and the reset stop voltage(from–0.5 to–1.0 V)during the set and reset processes,respectively.The analog RS behavior of the device was further investigated with appropriate pulse measurements to emulate vital synaptic functions,including long-term potentiation(LTP),long-term depression(LTD),spike-rate-dependent plasticity(SRDP),spike-timing-dependent plasticity(STDP),paired-pulse facilitation(PPF),paired-pulse depression(PPD)and post-tetanic potentiation(PTP).Overall,the detailed investigation of thickness-dependent GeSe monochalcogenide material indicates that it is a highly suitable candidate for use in highly scalable memory devices and electronic synapses for neuromorphic computing applications. 展开更多
关键词 conductive bridge random access memory(CBRAM) resistive memory switching monochalcogenide material bipolar and unipolar resistive switching multilevel resistive switching electronic synapses
原文传递
Optimizing the thickness of Ta_(2)O_(5) interfacial barrier layer to limit the oxidization of Ta ohmic interface and ZrO_(2) switching layer for multilevel data storage
3
作者 Muhammad Ismail Haider Abbas +2 位作者 Chandreswar Mahata changhwan choi Sungjun Kim 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第11期98-107,共10页
The multilevel storage capability of nonvolatile resistive random access memory(ReRAM)is greatly de-sired to accomplish high functioning memory density.In this study,Ta_(2)O_(5) thin film with different thick-nesses(2... The multilevel storage capability of nonvolatile resistive random access memory(ReRAM)is greatly de-sired to accomplish high functioning memory density.In this study,Ta_(2)O_(5) thin film with different thick-nesses(2,4,and 6 nm)was exploited as an appropriate interfacial barrier layer for limiting the formation of the interfacial layer between the 10 nm thick sputtering deposited resistive switching(RS)layer and Ta ohmic electrode to improve the switching cycle endurance and uniformity.Results show that lower form-ing voltage,narrow distribution of SET-voltages,good dc switching cycles(10^(3)),high pulse endurance(10^(6) cycles),long retention time(10^(4) s at room temperature and 100℃),and reliable multilevel resis-tance states were obtained at an appropriate thickness of∼2 nm Ta_(2)O_(5) interfacial barrier layer instead of without Ta_(2)O_(5) and with∼4 nm,and∼6 nm Ta_(2)O_(5) barrier layer,ZrO_(2)-based memristive devices.Besides,multilevel resistance states have been scientifically investigated via modulating the compliance current(CC)and RESET-stop voltages,which displays that all of the resistance states were distinct and stayed stable without any considerable deprivation over 10^(4) s retention time and 104 pulse endurance cycles.The I-V characteristics of RESET-stop voltage(from−1.7 to−2.3 V)of HRS are found to be a good linear fit with the Schottky equation.It can be seen that Schottky barrier height rises by increasing the stop-voltage during RESET-operation,resulting in enhancing the data storage memory window(on/offratio).Moreover,RESET-voltage and CC control of HRS and LRS revealed the physical origin of the RS mecha-nism,which entails the formation and rupture of conducting nanofilaments.It is thoroughly investigated that proper optimization of the barrier layer at the ohmic interface and the switching layer is essential in memristive devices.These results demonstrate that the ZrO_(2)-based memristive device with an optimized∼2 nm Ta_(2)O_(5) barrier layer is a promising candidate for multilevel data storage memory applications. 展开更多
关键词 Resistive switching Ta_(2)O_(5)/ZrO_(2)bilayer film Barrier layer thickness Multilevel resistance states RESET-stop voltage
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部