XML data can be represented by a tree or graph and the query processing for XML data requires the structural information among nodes. Designing an efficient labeling scheme for the nodes of Order-Sensitive XML trees i...XML data can be represented by a tree or graph and the query processing for XML data requires the structural information among nodes. Designing an efficient labeling scheme for the nodes of Order-Sensitive XML trees is one of the important methods to obtain the excellent management of XML data. Previous labeling schemes such as region and prefix often sacrifice updating performance and suffer increasing labeling space when inserting new nodes. To overcome these limitations, in this paper we propose a new labeling idea of separating structure from order. According to the proposed idea, a novel Prime-based Middle Fraction Labeling Scheme(PMFLS) is designed accordingly, in which a series of algorithms are proposed to obtain the structural relationships among nodes and to support updates. PMFLS combines the advantages of both prefix and region schemes in which the structural information and sequential information are separately expressed. PMFLS also supports Order-Sensitive updates without relabeling or recalculation, and its labeling space is stable. Experiments and analysis on several benchmarks are conducted and the results show that PMFLS is efficient in handling updates and also significantly improves the performance of the query processing with good scalability.展开更多
Online prediction is a process that repeatedly predicts the next element in the coming period from a sequence of given previous elements. This process has a broad range of applications in various areas, such as medica...Online prediction is a process that repeatedly predicts the next element in the coming period from a sequence of given previous elements. This process has a broad range of applications in various areas, such as medical, streaming media, and finance. The greatest challenge for online prediction is that the sequence data may not have explicit features because the data is frequently updated, which means good predictions are difficult to maintain. One of the popular solutions is to make the prediction with expert advice, and the challenge is to pick the right experts with minimum cumulative loss. In this research, we use the forex trading prediction, which is a good example for online prediction, as a case study. We also propose an improved expert selection model to select a good set of forex experts by learning previously observed sequences. Our model considers not only the average mistakes made by experts, but also the average profit earned by experts, to achieve a better performance, particularly in terms of financial profit. We demonstrate the merits of our model on two real major currency pairs corpora with extensive experiments.展开更多
基金supported by the National Science Foundation of China(Grant No.61272067,61370229)the National Key Technology R&D Program of China(Grant No.2012BAH27F05,2013BAH72B01)+1 种基金the National High Technology R&D Program of China(Grant No.2013AA01A212)the S&T Projects of Guangdong Province(Grant No.2016B010109008,2014B010117007,2015A030401087,2015B010109003,2015B010110002)
文摘XML data can be represented by a tree or graph and the query processing for XML data requires the structural information among nodes. Designing an efficient labeling scheme for the nodes of Order-Sensitive XML trees is one of the important methods to obtain the excellent management of XML data. Previous labeling schemes such as region and prefix often sacrifice updating performance and suffer increasing labeling space when inserting new nodes. To overcome these limitations, in this paper we propose a new labeling idea of separating structure from order. According to the proposed idea, a novel Prime-based Middle Fraction Labeling Scheme(PMFLS) is designed accordingly, in which a series of algorithms are proposed to obtain the structural relationships among nodes and to support updates. PMFLS combines the advantages of both prefix and region schemes in which the structural information and sequential information are separately expressed. PMFLS also supports Order-Sensitive updates without relabeling or recalculation, and its labeling space is stable. Experiments and analysis on several benchmarks are conducted and the results show that PMFLS is efficient in handling updates and also significantly improves the performance of the query processing with good scalability.
基金This work was supported by the Natural Science Foundation of Guangdong Province, China (2015A030310509), the National Natural Science Foundation of China (Grant Nos. 61370229, 61272067, 61303049), the S&T Planning Key Projects of Guangdong Province (2014B010117007, 2015B010109003, 2015A030401087, 2016A030303055, 2016B030305004, and 2016B010109008) and the S&T Projects of Guangzhou Municipality, China (201604010003).
文摘Online prediction is a process that repeatedly predicts the next element in the coming period from a sequence of given previous elements. This process has a broad range of applications in various areas, such as medical, streaming media, and finance. The greatest challenge for online prediction is that the sequence data may not have explicit features because the data is frequently updated, which means good predictions are difficult to maintain. One of the popular solutions is to make the prediction with expert advice, and the challenge is to pick the right experts with minimum cumulative loss. In this research, we use the forex trading prediction, which is a good example for online prediction, as a case study. We also propose an improved expert selection model to select a good set of forex experts by learning previously observed sequences. Our model considers not only the average mistakes made by experts, but also the average profit earned by experts, to achieve a better performance, particularly in terms of financial profit. We demonstrate the merits of our model on two real major currency pairs corpora with extensive experiments.