For smooth and wide application of conservation agriculture(CA), remaining uncertainties about its impacts on crop yield need to be reduced. Based on previous field experiments in China, a meta-analysis was performed ...For smooth and wide application of conservation agriculture(CA), remaining uncertainties about its impacts on crop yield need to be reduced. Based on previous field experiments in China, a meta-analysis was performed to quantify the actual impacts of CA practices(NT: no/reduced-tillage only, CTSR: conventional tillage with straw retention, NTSR: NT with straw retention) on crop yields as compared to conventional tillage without straw retention(CT).Although CA practices increased crop yield by 4.6% on average, there were large variations in their impacts. For each CA practice, CTSR and NTSR significantly increased crop yield by 4.9%and 6.3%, respectively, compared to CT. However, no significant effect was found for NT. Among ecological areas, significant positive effects of CA practices were found in areas with an annual precipitation below 600 mm. Similar effects were found in areas with annual mean air temperature above 5 °C. For cropping regions, CA increased crop yield by 6.4% and 5.5%compared to CT in Northwest and South China, respectively, whereas no significant effects were found in the North China and Northeast China regions. Among crops, the positive effects of CA practices were significantly higher in maize(7.5%) and rice(4.1%) than in wheat(2.9%). NT likely decreased wheat yield. Our results indicate that there are great differences in the impacts of CA practices on crop yield, owing to regional variation in climate and crop types. CA will most likely increase maize yield but reduce wheat yield. It is strongly recommended to apply CA with crop straw retention in maize cropping areas and seasons with a warm and dry climate pattern.展开更多
China is becoming the largest grain producing and carbon-emitting country in the world,with a steady increase in population and economic development.A review of Chinese experiences in ensuring food self-sufficiency an...China is becoming the largest grain producing and carbon-emitting country in the world,with a steady increase in population and economic development.A review of Chinese experiences in ensuring food self-sufficiency and reducing carbon emission in the agricultural sector can provide a valuable reference for similar countries and regions.According to a comprehensive review of previous publications and recent field observations,China has experienced on average a larger and faster climatic warming trend than the global trend,and there are large uncertainties in precipitation change,which shows a non-significantly increasing trend.Existing evidence shows that the effects of climatic warming on major staple crop production in China could be markedly negative or positive,depending on the specific cropping region,season,and crop.However,historical data analysis and field warming experiments have shown that moderate warming,of less than2.0 °C,could benefit crop production in China overall.During the most recent warming decades,China has made successful adaptations in cropping systems,such as new cultivar breeding,cropping region adjustment,and cropping practice optimization,to exploit the positive rather than to avoid the negative effects of climatic warming on crop growth.All of these successful adaptations have greatly increased crop yield,leading to higher resource use efficiency as well as greatly increased soil organic carbon content with reduced greenhouse gas emissions.Under the warming climate,China has not only achieved great successes in crop production but also realized a large advance in greenhouse gas emission mitigation.Chinese experiences in cropping system innovation for coping with climatic warming demonstrate that food security and climatic warming mitigation can be synergized through policy,knowledge,and technological innovation.With the increasingly critical status of food security and climatic warming,further efforts should be invested in new agricultural policy,knowledge and technology creation,and popularization of climate-smart agriculture,and more financial investments should be made in field infrastructure development to increase cropping system resilience in China.展开更多
The stress-strain behavior and copper are studied by the molecular dynamics incipient yield surface of nanoporous single crystal (MD) method. The problem is modeled by a periodic unit cell subject to multi-axial loa...The stress-strain behavior and copper are studied by the molecular dynamics incipient yield surface of nanoporous single crystal (MD) method. The problem is modeled by a periodic unit cell subject to multi-axial loading. The loading induced defect evolution is explored. The incipient yield surfaces are found to be tension-compression asymmetric. For a given void volume fraction, apparent size effects in the yield surface are predicted: the smaller behaves stronger. The evolution pattern of defects (i.e., dislocation and stacking faults) is insensitive to the model size and void volume fraction. However, it is loading path dependent. Squared prismatic dislocation loops dominate the incipient yielding under hydrostatic tension while stacking-faults are the primary defects for hydrostatic compression and uniaxial tension/compression.展开更多
Self-limiting oxidation of nanowires has been previously described as a reaction- or diffusion-controlled process. In this letter, the concept of finite reactive region is introduced into a diffusion-controlled model,...Self-limiting oxidation of nanowires has been previously described as a reaction- or diffusion-controlled process. In this letter, the concept of finite reactive region is introduced into a diffusion-controlled model, based upon which a two-dimensional cylindrical kinetics model is developed for the oxidation of silicon nanowires and is extended for tungsten. In the model, diffusivity is affected by the expansive oxidation reaction induced stress. The dependency of the oxidation upon curvature and temperature is modeled. Good agreement between the model predictions and available experimental data is obtained. The de- veloped model serves to quantify the oxidation in two-dimensional nanostructures and is expected to facilitate their fabrication via thermal oxidation techniques.展开更多
Straw return is a sustainable soil fertility-building practice,which can affect soil microbial communities.However,how straw return affects arbuscular mycorrhizal fungi(AMF)is not well explored.Here,we studied the imp...Straw return is a sustainable soil fertility-building practice,which can affect soil microbial communities.However,how straw return affects arbuscular mycorrhizal fungi(AMF)is not well explored.Here,we studied the impacts of different straw management treatments over eight years on the structure and functioning of AMF communities in a rice-wheat rotation system.The straw management treatments included no tillage with no straw(NTNS),rotary tillage straw return(RTSR),and ditch-buried straw return(DBSR).The community structure of AMF was characterized using high-throughput sequencing,and the mycorrhizal functioning was quantified using an in situ mycorrhizal-suppression treatment.Different straw management treatments formed unique AMF community structure,which was closely related to changes in soil total organic carbon,available phosphorus,total nitrogen,ammonium,and nitrate.When compared with NTNS,RTSR significantly increased Shannon diversity in 0–10 cm soil layer,while DBSR increased it in 10–20 cm soil layer;DBSR significantly increased hyphal length density in the whole ploughing layer(0–20 cm),but RTSR only increased it in the subsurface soil layer(10–20 cm).The mycorrhizal responses of shoot biomass and nutrient(N and P)uptake were positive under both straw return treatments(RTSR and DBSR),but negative under NTNS.The community composition of AMF was significantly correlated to hyphal length density,and the latter was further a positive predictor for the mycorrhizal responses of plant growth and nutrient uptake.These findings suggest that straw return can affect AMF community structure and functioning,and farmers should manage mycorrhizas to strengthen their beneficial effects on crop production.展开更多
In the last decade,two-dimensional layered materials(2DLMs)have been drawing extensive attentions due to their unique properties,such as absence of surface dangling bonds,thickness-dependent bandgap,high absorption co...In the last decade,two-dimensional layered materials(2DLMs)have been drawing extensive attentions due to their unique properties,such as absence of surface dangling bonds,thickness-dependent bandgap,high absorption coeffi-cient,large specific surface area,and so on.But the high-quality growth and transfer of wafer-scale 2DLMs films is still a great challenge for the commerciali-zation of pure 2DLMs-based photodetectors.Conversely,the material growth and device fabrication technologies of three-dimensional(3D)semiconductors photodetectors tend to be gradually matured.However,the further improvement of the photodetection performance is limited by the difficult heterogeneous inte-gration or the inferior crystal quality via heteroepitaxy.Fortunately,2D/3D van der Waals heterostructures(vdWH)combine the advantages of the two types of materials simultaneously,which may provide a new platform for developing high-performance optoelectronic devices.Here,we first discuss the unique advantages of 2D/3D vdWH for the future development of photodetection field and simply introduce the structure categories,working mechanisms,and the typical fabrication methods of 2D/3D vdWH photodetector.Then,we outline the recent progress on 2D/3D vdWH-based photodetection devices integrating 2DLMs with the traditional 3D semiconductor materials,including Si,Ge,GaAs,AlGaN,SiC,and so on.Finally,we highlight the current challenges and pros-pects of heterointegrating 2DLMs with traditional 3D semiconductors toward photodetection applications.展开更多
Natto is a soybean product fermented by natto bacteria.It is rich in a variety of amino acids,vitamins,proteins and active enzymes.It has a number of biological activities,such as thrombolysis,prevention of osteoporos...Natto is a soybean product fermented by natto bacteria.It is rich in a variety of amino acids,vitamins,proteins and active enzymes.It has a number of biological activities,such as thrombolysis,prevention of osteoporosis,antibacterial,anticancer,antioxidant and so on.It is widely used in medicine,healthcare food,biocatalysis and other fields.Natto is rich in many pharmacological active substances and has significant medicinal research value.This paper summarizes the pharmacological activities and applications of natto in and outside China,so as to provide references for further research and development of natto.展开更多
Nowadays,China stands as the global leader in terms of potato planting area and total potato production.The rapid and nondestructive detection of the potato quality before processing is of great significance in promot...Nowadays,China stands as the global leader in terms of potato planting area and total potato production.The rapid and nondestructive detection of the potato quality before processing is of great significance in promoting rural revitalization and augmenting farmers’income.However,existing potato quality sorting methods are primarily confined to theoretical research,and the market lacks an integrated intelligent detection system.Therefore,there is an urgent need for a post-harvest potato detection method adapted to the actual production needs.The study proposes a potato quality sorting method based on cross-modal technology.First,an industrial camera obtains image information for external quality detection.A model using the YOLOv5s algorithm to detect external green-skinned,germinated,rot and mechanical damage defects.VIS/NIR spectroscopy is used to obtain spectral information for internal quality detection.A convolutional neural network(CNN)algorithm is used to detect internal blackheart disease defects.The mean average precision(mAP)of the external detection model is 0.892 when intersection of union(IoU)=0.5.The accuracy of the internal detection model is 98.2%.The real-time dynamic defect detection rate for the final online detection system is 91.3%,and the average detection time is 350 ms per potato.In contrast to samples collected in an ideal laboratory setting for analysis,the dynamic detection results of this study are more applicable based on a real-time online working environment.It also provides a valuable reference for the subsequent online quality testing of similar agricultural products.展开更多
The Al Ga N-based deep ultraviolet(DUV)light-emitting diode(LED)is an alternative DUV light source to replace traditional mercury-based lamps.However,the state-of-the-art DUV LEDs currently exhibit poor wall-plug effi...The Al Ga N-based deep ultraviolet(DUV)light-emitting diode(LED)is an alternative DUV light source to replace traditional mercury-based lamps.However,the state-of-the-art DUV LEDs currently exhibit poor wall-plug efficiency and low light output power,which seriously hinder their commercialization.In this work,we design and report a tunnel-junctioncascaded(TJC)DUV LED,which enables multiple radiative recombinations within the active regions.Therefore,the light output power of the TJC-DUV LEDs is more than doubled compared to the conventional DUV LED.Correspondingly,the wall-plug efficiency of the TJC-DUV LED is also significantly boosted by 25%at 60 m A.展开更多
Phosphorus doped(P-doped) nanogranular SiO2 films have been deposited by plasma-enhanced chemical vapor deposition. A high proton conductivity of;.2x10-4S/cm and a large electric double layer(EDL) capacitance of;....Phosphorus doped(P-doped) nanogranular SiO2 films have been deposited by plasma-enhanced chemical vapor deposition. A high proton conductivity of;.2x10-4S/cm and a large electric double layer(EDL) capacitance of;.2μF/cm2 have been obtained. Flexible coplanar-gate EDL thin film transistors(TFTs) gated by P-doped nanogranular SiO2 films are self-assembled on plastic substrates at room temperature. Due to the big EDL capacitance,such TFTs show ultra-low voltage operation of 1 V,a large field-effect mobility of 18.9 cm2/Vs,a small subthreshold swing of 85 m V/decade and a high current on/off ratio of 107. Furthermore,the EDL TFT could work in dual coplanar gate mode. AND logic operation is realized. Our results demonstrate that such TFTs gated by P-doped nanogranular SiO2 films have potential applications in low-power flexible electronics.展开更多
The structural and magnetic properties, as well as the mechanism of magnetization, of Ni-implanted A1N films were studied. A1N was deposited on A1203 substrates by metalorganic chemical vapor deposition (MOCVD), and...The structural and magnetic properties, as well as the mechanism of magnetization, of Ni-implanted A1N films were studied. A1N was deposited on A1203 substrates by metalorganic chemical vapor deposition (MOCVD), and subsequently Ni ions were implanted into the A1N films by Metal Vapor Arc (MEVVA) sources at an energy of 100 keV for 3 h. The films were annealed at 900~C for 1 h in the furnace in order to transfer the Ni ions from interstitial sites to substitutional sites in A1N, thus activating the Ni3+ ions. Characterizations were performed in situ using X-ray diffraction (XRD), X-ray photoemis- sion spectroscopy (XPS), and vibrating sample magneto- metry (VSM), which showed that the films have a wurtzite structure without the formation of a secondary phase after implanting and annealing. Ni ions were successfully implanted into substitutional sites of AlN films, and the chemical bonding states are Ni-N. The apparent hysteresis loops prove that the films exhibited magnetism at 300 K. The room temperature (RT) saturation magnetization moment (Ms) and eoercivity (He) values were about 0.36 emu/g and 35.29 Oe, respectively. From the first-principles calculation, a total magnetic moment of 2.99 ~tB per supercell is expected, and the local magnetic moment of a NiN4 tetrahedron, 2.45 gB, makes the primary contribu- tion. The doped Ni atom hybridizes with four nearby N atoms in a NiN4 tetrahedron; then the electrons of the N atoms are spin-polarized and couple with the electrons of the Ni atom with strong magnetization, which results in magnetism. Therefore, the p-d exchange mechanism between Ni-3d and N-2p can be the origin of the magnetism. It is expected that these room temperature, ferromagnetic, Ni-doped A1N films will have many potential applications as diluted magnetic semiconductors.展开更多
In this work, we demonstrate an effective method to improve capacitive performance of NaV6O(15) intrinsically by annealing. NaV6O(15) nanorods(NRs) prepared by a simple annealing treatment exhibit significantly ...In this work, we demonstrate an effective method to improve capacitive performance of NaV6O(15) intrinsically by annealing. NaV6O(15) nanorods(NRs) prepared by a simple annealing treatment exhibit significantly improved electrochemical performance compared with the untreated NaV6O(15) electrode, and yield a high specific capacitance(402.8 F/g at 300 mA/g). Furthermore, the annealing treated nanorods show excellent rate capability and cycling stability(ca. 80% capacitance retention after 1000 cycles at a scan rate of100 mV/s). Our results have confirmed that the annealing treatment has great influence on the capacitive performance of NaV6O(15), which may be attributed to the intrinsic three dimensional(3D) tunneled structures of NaV6O(15), and NR morphology. These findings may further broaden the application of NaV6O(15)-based materials for high performance supercapacitors(SCs), aqueous rechargeable lithium batteries and Li-ion capacitors.展开更多
Suppressing sintering of supported particles is of importance for the study and application of metal-TiO_(2)system.Theoretical study of Ostwald ripening of TiO_(2)(110)-supported Pd particles would be helpful to exten...Suppressing sintering of supported particles is of importance for the study and application of metal-TiO_(2)system.Theoretical study of Ostwald ripening of TiO_(2)(110)-supported Pd particles would be helpful to extend the understanding of the sintering.In this paper,based on density functional theory(DFT),the surface energy of Pd and the total activation energy(the sum of formation energy and diffusion barrier)of TiO2-supported Pd were calculated.Since the total activation energy is mainly contributed from the formation energy,it is indicated that the ripening of Pd particles would be in the interface control limit.Subsequently,the calculated surface energy and total activation energy were used to simulate Ostwald ripening of TiO_(2)(l 10)-supported Pd particles.As a result,in comparison with larger particles,smaller particles would worsen the performance of ripening-resistance according to its lower onset temperature and shorter half-life time.The differences on ripeningresistance among different size particles could be mitigated along with the increase of temperature.Moreover,it is verified that the monodispersity can improve ripening resistance especially for the smaller particles.However,the different performances of the ripening originating from difference of the relative standard deviation are more obvious at higher temperature than lower temperature.This temperature effect for the relative standard deviation is the inverse of that for the initial main particle size.It is indicated that the influence of dispersity of TiO_(2)(l 10)-supported Pd particles on ripening may be more sensitive at higher temperature.In this contribution,we extend the first principle kinetics to elaborate the ripening of Pd on TiO_(2)(l 10).It is expected that the information from first principle kinetics would be helpful to the study in experiments.展开更多
Indium gallium nitride(InGaN)based blue light-emitting diodes(LEDs)suffer from insufficient crystal quality and serious efficiency droop in large forward current.In this paper,the InGaN-based blue LEDs are grown on sp...Indium gallium nitride(InGaN)based blue light-emitting diodes(LEDs)suffer from insufficient crystal quality and serious efficiency droop in large forward current.In this paper,the InGaN-based blue LEDs are grown on sputtered aluminum nitride(AlN)films to improve the device light power and weaken the efficiency droop.The effects of oxygen flow rate on the sputtering of AlN films on sapphire and device performance of blue LEDs are studied in detail.The mechanism of external quantum efficiency improvement is related to the change of V-pits density in multiple quantum wells.The external quantum efficiency of 66%and 3-V operating voltage are measured at a 40-mA forward current of with the optimal oxygen flow rate of 4 SCCM.展开更多
In this paper, Bi2S3 nanorods were successfully synthesized via a facile one-pot hydrothermal method and characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscop...In this paper, Bi2S3 nanorods were successfully synthesized via a facile one-pot hydrothermal method and characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy and X-ray photoelectron spectroscopy. Then the Bi2S3 nanorods were deposited on Au interdigital electrodes by dip-coating to fabricate photodetectors. The photoresponse properties using Bi2S3 nanorods as a representative system showed a significantly enhanced conductivity and the current-voltage (I-V) characteristic exhibited about ca. 2 orders of magnitude larger response and decay time was than the dark current. The estimated to be -371.66 and 386 ms, respectively, indicating Bi2S3 may be an excellent candidate for high speed and high-sensitivity photoelectrical switches and light sensitive devices.展开更多
基金jointly supported by the National Key Technology R&D Program of China(2011BAD16B14)the Natural Science Foundation of China(31201179)the Innovation Program of Chinese Academy of Agricultural Sciences
文摘For smooth and wide application of conservation agriculture(CA), remaining uncertainties about its impacts on crop yield need to be reduced. Based on previous field experiments in China, a meta-analysis was performed to quantify the actual impacts of CA practices(NT: no/reduced-tillage only, CTSR: conventional tillage with straw retention, NTSR: NT with straw retention) on crop yields as compared to conventional tillage without straw retention(CT).Although CA practices increased crop yield by 4.6% on average, there were large variations in their impacts. For each CA practice, CTSR and NTSR significantly increased crop yield by 4.9%and 6.3%, respectively, compared to CT. However, no significant effect was found for NT. Among ecological areas, significant positive effects of CA practices were found in areas with an annual precipitation below 600 mm. Similar effects were found in areas with annual mean air temperature above 5 °C. For cropping regions, CA increased crop yield by 6.4% and 5.5%compared to CT in Northwest and South China, respectively, whereas no significant effects were found in the North China and Northeast China regions. Among crops, the positive effects of CA practices were significantly higher in maize(7.5%) and rice(4.1%) than in wheat(2.9%). NT likely decreased wheat yield. Our results indicate that there are great differences in the impacts of CA practices on crop yield, owing to regional variation in climate and crop types. CA will most likely increase maize yield but reduce wheat yield. It is strongly recommended to apply CA with crop straw retention in maize cropping areas and seasons with a warm and dry climate pattern.
基金supported by the State Key Program of China(No.2016YFD0300903)the National Key Technology R&D Program of China(No.2015BAC02B02)+1 种基金the Special Fund for Agro-scientific Research in the Public Interest(Nos.201503122,201503118)the Agricultural Science and Technology Innovation Program of CAAS
文摘China is becoming the largest grain producing and carbon-emitting country in the world,with a steady increase in population and economic development.A review of Chinese experiences in ensuring food self-sufficiency and reducing carbon emission in the agricultural sector can provide a valuable reference for similar countries and regions.According to a comprehensive review of previous publications and recent field observations,China has experienced on average a larger and faster climatic warming trend than the global trend,and there are large uncertainties in precipitation change,which shows a non-significantly increasing trend.Existing evidence shows that the effects of climatic warming on major staple crop production in China could be markedly negative or positive,depending on the specific cropping region,season,and crop.However,historical data analysis and field warming experiments have shown that moderate warming,of less than2.0 °C,could benefit crop production in China overall.During the most recent warming decades,China has made successful adaptations in cropping systems,such as new cultivar breeding,cropping region adjustment,and cropping practice optimization,to exploit the positive rather than to avoid the negative effects of climatic warming on crop growth.All of these successful adaptations have greatly increased crop yield,leading to higher resource use efficiency as well as greatly increased soil organic carbon content with reduced greenhouse gas emissions.Under the warming climate,China has not only achieved great successes in crop production but also realized a large advance in greenhouse gas emission mitigation.Chinese experiences in cropping system innovation for coping with climatic warming demonstrate that food security and climatic warming mitigation can be synergized through policy,knowledge,and technological innovation.With the increasingly critical status of food security and climatic warming,further efforts should be invested in new agricultural policy,knowledge and technology creation,and popularization of climate-smart agriculture,and more financial investments should be made in field infrastructure development to increase cropping system resilience in China.
基金supported by the National Natural Science Foundation of China (Nos10425210 and 10832002)the National Basic Research Program of China (No2006CB601202)the National High Technology Research and Development Program of China (No2006AA03Z519)
文摘The stress-strain behavior and copper are studied by the molecular dynamics incipient yield surface of nanoporous single crystal (MD) method. The problem is modeled by a periodic unit cell subject to multi-axial loading. The loading induced defect evolution is explored. The incipient yield surfaces are found to be tension-compression asymmetric. For a given void volume fraction, apparent size effects in the yield surface are predicted: the smaller behaves stronger. The evolution pattern of defects (i.e., dislocation and stacking faults) is insensitive to the model size and void volume fraction. However, it is loading path dependent. Squared prismatic dislocation loops dominate the incipient yielding under hydrostatic tension while stacking-faults are the primary defects for hydrostatic compression and uniaxial tension/compression.
基金financial support of this work by the National Natural Science Foundation of China(11472149)the Tsinghua University Initiative Scientific Research Program(2014z22074)
文摘Self-limiting oxidation of nanowires has been previously described as a reaction- or diffusion-controlled process. In this letter, the concept of finite reactive region is introduced into a diffusion-controlled model, based upon which a two-dimensional cylindrical kinetics model is developed for the oxidation of silicon nanowires and is extended for tungsten. In the model, diffusivity is affected by the expansive oxidation reaction induced stress. The dependency of the oxidation upon curvature and temperature is modeled. Good agreement between the model predictions and available experimental data is obtained. The de- veloped model serves to quantify the oxidation in two-dimensional nanostructures and is expected to facilitate their fabrication via thermal oxidation techniques.
基金supported by the National Natural Science Foundation of China(No.31770483)the Natural Science Foundation of Jiangsu Province,China(Nos.21KJB210002,BK20210831,and BK20191310)。
文摘Straw return is a sustainable soil fertility-building practice,which can affect soil microbial communities.However,how straw return affects arbuscular mycorrhizal fungi(AMF)is not well explored.Here,we studied the impacts of different straw management treatments over eight years on the structure and functioning of AMF communities in a rice-wheat rotation system.The straw management treatments included no tillage with no straw(NTNS),rotary tillage straw return(RTSR),and ditch-buried straw return(DBSR).The community structure of AMF was characterized using high-throughput sequencing,and the mycorrhizal functioning was quantified using an in situ mycorrhizal-suppression treatment.Different straw management treatments formed unique AMF community structure,which was closely related to changes in soil total organic carbon,available phosphorus,total nitrogen,ammonium,and nitrate.When compared with NTNS,RTSR significantly increased Shannon diversity in 0–10 cm soil layer,while DBSR increased it in 10–20 cm soil layer;DBSR significantly increased hyphal length density in the whole ploughing layer(0–20 cm),but RTSR only increased it in the subsurface soil layer(10–20 cm).The mycorrhizal responses of shoot biomass and nutrient(N and P)uptake were positive under both straw return treatments(RTSR and DBSR),but negative under NTNS.The community composition of AMF was significantly correlated to hyphal length density,and the latter was further a positive predictor for the mycorrhizal responses of plant growth and nutrient uptake.These findings suggest that straw return can affect AMF community structure and functioning,and farmers should manage mycorrhizas to strengthen their beneficial effects on crop production.
基金Funding information National Natural Science Foundation of China,Grant/Award Numbers:61974174,61904184,62174061,62174063National Key Research and Development Program of China,Grant/Award Number:2022YFB3605104+3 种基金Key Research and Development Program of Hubei Province,Grant/Award Number:2021BAA071Key Laboratory of Infrared Imaging Materials and Detectors,the Shanghai Institute of Technical Physics,the Chinese Academy of Sciences,Grant/Award Number:IIMDKFJJ-21-07Fundamental Research Funds for the Central Universities,Grant/Award Number.2020kfyXJJS124Director Fund of WNLO。
文摘In the last decade,two-dimensional layered materials(2DLMs)have been drawing extensive attentions due to their unique properties,such as absence of surface dangling bonds,thickness-dependent bandgap,high absorption coeffi-cient,large specific surface area,and so on.But the high-quality growth and transfer of wafer-scale 2DLMs films is still a great challenge for the commerciali-zation of pure 2DLMs-based photodetectors.Conversely,the material growth and device fabrication technologies of three-dimensional(3D)semiconductors photodetectors tend to be gradually matured.However,the further improvement of the photodetection performance is limited by the difficult heterogeneous inte-gration or the inferior crystal quality via heteroepitaxy.Fortunately,2D/3D van der Waals heterostructures(vdWH)combine the advantages of the two types of materials simultaneously,which may provide a new platform for developing high-performance optoelectronic devices.Here,we first discuss the unique advantages of 2D/3D vdWH for the future development of photodetection field and simply introduce the structure categories,working mechanisms,and the typical fabrication methods of 2D/3D vdWH photodetector.Then,we outline the recent progress on 2D/3D vdWH-based photodetection devices integrating 2DLMs with the traditional 3D semiconductor materials,including Si,Ge,GaAs,AlGaN,SiC,and so on.Finally,we highlight the current challenges and pros-pects of heterointegrating 2DLMs with traditional 3D semiconductors toward photodetection applications.
基金supported by National Administration of Traditional Chinese Medicine International Cooperation Program(No.0610-2140NF020630)。
文摘Natto is a soybean product fermented by natto bacteria.It is rich in a variety of amino acids,vitamins,proteins and active enzymes.It has a number of biological activities,such as thrombolysis,prevention of osteoporosis,antibacterial,anticancer,antioxidant and so on.It is widely used in medicine,healthcare food,biocatalysis and other fields.Natto is rich in many pharmacological active substances and has significant medicinal research value.This paper summarizes the pharmacological activities and applications of natto in and outside China,so as to provide references for further research and development of natto.
基金supported by the Natural Science Foundation of Guangxi(2021GXNSFBA075026 and 2019GXNSFGA245005)the Fund of Guangxi Key Laboratory of Information Materials(221028-Z)+1 种基金Guo R acknowledges the support of the Innovation Project of Guilin University of Electronic Technology(GUET)for Graduate Education(2023YCXS150)Zhang S would like to thank Guangxi Training Program of Innovation and Entrepreneurship for Undergraduates(S202210595268)for its support.
文摘基于m-TiO_(2)/m-ZrO_(2)/C的无空穴可印刷介观钙钛矿太阳能电池(p-MPSCs)具有成本低廉、操作简便和稳定性优异的特点,被认为是最具商业应用潜力的新型光伏器件之一.然而,与传统PSC相比,p-MPSCs的开路电压(VOC)损失较大,导致能量转换效率(PCE)与传统PSC存在差距.在此,我们提出了一种利用5-氨基-4甲酰胺咪唑盐酸盐(AICA)提升p-MPSCs开路电压的方法.AICA不仅可以调节钙钛矿膜的功函数,其酰胺基团和氨基还能分别钝化钙钛矿中未配位的Pb2+和I−缺陷,稳定钙钛矿的结构,形成高质量钙钛矿薄膜,从而抑制缺陷诱导的非辐射复合.因此,引入AICA后p-MPSCs获得了16.68%的PCE,并且VOC从0.88提升至0.98 V.
基金supported by the Zhejiang Province Key Research and Development Program(Grant No.2021C02011)Zhejiang Province Public Welfare Technology Application Research Project(Grant No.LGN18-F030002)+3 种基金Hangzhou Science and Technology Bureau(Grant No.20201203B116)Program of“Xinmiao”(Potential)Talents in Zhejiang Province(Grant Number:2022R4-07B055)the Graduate Scientific Research Foundation of Hangzhou Dianzi University(Grant No.CXJJ2022177)the Major Science and Technology Projects of Breeding New Varieties of Agriculture in Zhejiang Province(Grant No.2021C02074).
文摘Nowadays,China stands as the global leader in terms of potato planting area and total potato production.The rapid and nondestructive detection of the potato quality before processing is of great significance in promoting rural revitalization and augmenting farmers’income.However,existing potato quality sorting methods are primarily confined to theoretical research,and the market lacks an integrated intelligent detection system.Therefore,there is an urgent need for a post-harvest potato detection method adapted to the actual production needs.The study proposes a potato quality sorting method based on cross-modal technology.First,an industrial camera obtains image information for external quality detection.A model using the YOLOv5s algorithm to detect external green-skinned,germinated,rot and mechanical damage defects.VIS/NIR spectroscopy is used to obtain spectral information for internal quality detection.A convolutional neural network(CNN)algorithm is used to detect internal blackheart disease defects.The mean average precision(mAP)of the external detection model is 0.892 when intersection of union(IoU)=0.5.The accuracy of the internal detection model is 98.2%.The real-time dynamic defect detection rate for the final online detection system is 91.3%,and the average detection time is 350 ms per potato.In contrast to samples collected in an ideal laboratory setting for analysis,the dynamic detection results of this study are more applicable based on a real-time online working environment.It also provides a valuable reference for the subsequent online quality testing of similar agricultural products.
基金supported by the National Natural Science Foundation of China(No.61905236)the University of Science and Technology of China(No.KY2100000081)+2 种基金the Chinese Academy of Sciences(No.KJ2100230003)the Fundamental Research Funds for the Central Universities(No.WK2100230020)the USTC Research Funds of the Double First-Class Initiative(No.YD3480002002)。
文摘The Al Ga N-based deep ultraviolet(DUV)light-emitting diode(LED)is an alternative DUV light source to replace traditional mercury-based lamps.However,the state-of-the-art DUV LEDs currently exhibit poor wall-plug efficiency and low light output power,which seriously hinder their commercialization.In this work,we design and report a tunnel-junctioncascaded(TJC)DUV LED,which enables multiple radiative recombinations within the active regions.Therefore,the light output power of the TJC-DUV LEDs is more than doubled compared to the conventional DUV LED.Correspondingly,the wall-plug efficiency of the TJC-DUV LED is also significantly boosted by 25%at 60 m A.
基金supported by the National Natural Science Foundation of China (Grant No.51302276)the Zhejiang Provincial Natural Science Foundation of China (Grant No.LY14A040009)in part by the Foundation of the Science and Technology Bureau of Wuhan City (Grant No.2014010101010006)
文摘Phosphorus doped(P-doped) nanogranular SiO2 films have been deposited by plasma-enhanced chemical vapor deposition. A high proton conductivity of;.2x10-4S/cm and a large electric double layer(EDL) capacitance of;.2μF/cm2 have been obtained. Flexible coplanar-gate EDL thin film transistors(TFTs) gated by P-doped nanogranular SiO2 films are self-assembled on plastic substrates at room temperature. Due to the big EDL capacitance,such TFTs show ultra-low voltage operation of 1 V,a large field-effect mobility of 18.9 cm2/Vs,a small subthreshold swing of 85 m V/decade and a high current on/off ratio of 107. Furthermore,the EDL TFT could work in dual coplanar gate mode. AND logic operation is realized. Our results demonstrate that such TFTs gated by P-doped nanogranular SiO2 films have potential applications in low-power flexible electronics.
文摘The structural and magnetic properties, as well as the mechanism of magnetization, of Ni-implanted A1N films were studied. A1N was deposited on A1203 substrates by metalorganic chemical vapor deposition (MOCVD), and subsequently Ni ions were implanted into the A1N films by Metal Vapor Arc (MEVVA) sources at an energy of 100 keV for 3 h. The films were annealed at 900~C for 1 h in the furnace in order to transfer the Ni ions from interstitial sites to substitutional sites in A1N, thus activating the Ni3+ ions. Characterizations were performed in situ using X-ray diffraction (XRD), X-ray photoemis- sion spectroscopy (XPS), and vibrating sample magneto- metry (VSM), which showed that the films have a wurtzite structure without the formation of a secondary phase after implanting and annealing. Ni ions were successfully implanted into substitutional sites of AlN films, and the chemical bonding states are Ni-N. The apparent hysteresis loops prove that the films exhibited magnetism at 300 K. The room temperature (RT) saturation magnetization moment (Ms) and eoercivity (He) values were about 0.36 emu/g and 35.29 Oe, respectively. From the first-principles calculation, a total magnetic moment of 2.99 ~tB per supercell is expected, and the local magnetic moment of a NiN4 tetrahedron, 2.45 gB, makes the primary contribu- tion. The doped Ni atom hybridizes with four nearby N atoms in a NiN4 tetrahedron; then the electrons of the N atoms are spin-polarized and couple with the electrons of the Ni atom with strong magnetization, which results in magnetism. Therefore, the p-d exchange mechanism between Ni-3d and N-2p can be the origin of the magnetism. It is expected that these room temperature, ferromagnetic, Ni-doped A1N films will have many potential applications as diluted magnetic semiconductors.
基金supported by the National Basic Research Program of China (Grant No. 2012CB619302)the Science and Technology Bureau of Wuhan City (No. 2014010101010003)+2 种基金the Key Laboratory of Infrared Imaging Materials and Detectors,Shanghai Institute of Technical Physics,Chinese Academy of Sciences (Grant No. IIMDKFJJ-15-07)the National Natural Science Foundation of China (Grant No. 11574166)the Director Fund of WNLO
文摘In this work, we demonstrate an effective method to improve capacitive performance of NaV6O(15) intrinsically by annealing. NaV6O(15) nanorods(NRs) prepared by a simple annealing treatment exhibit significantly improved electrochemical performance compared with the untreated NaV6O(15) electrode, and yield a high specific capacitance(402.8 F/g at 300 mA/g). Furthermore, the annealing treated nanorods show excellent rate capability and cycling stability(ca. 80% capacitance retention after 1000 cycles at a scan rate of100 mV/s). Our results have confirmed that the annealing treatment has great influence on the capacitive performance of NaV6O(15), which may be attributed to the intrinsic three dimensional(3D) tunneled structures of NaV6O(15), and NR morphology. These findings may further broaden the application of NaV6O(15)-based materials for high performance supercapacitors(SCs), aqueous rechargeable lithium batteries and Li-ion capacitors.
基金Key Project of Chinese National Development Programs(No.2018YFB0406602)the National Natural Science Foundation of China(Grant No.61774065).
文摘Suppressing sintering of supported particles is of importance for the study and application of metal-TiO_(2)system.Theoretical study of Ostwald ripening of TiO_(2)(110)-supported Pd particles would be helpful to extend the understanding of the sintering.In this paper,based on density functional theory(DFT),the surface energy of Pd and the total activation energy(the sum of formation energy and diffusion barrier)of TiO2-supported Pd were calculated.Since the total activation energy is mainly contributed from the formation energy,it is indicated that the ripening of Pd particles would be in the interface control limit.Subsequently,the calculated surface energy and total activation energy were used to simulate Ostwald ripening of TiO_(2)(l 10)-supported Pd particles.As a result,in comparison with larger particles,smaller particles would worsen the performance of ripening-resistance according to its lower onset temperature and shorter half-life time.The differences on ripeningresistance among different size particles could be mitigated along with the increase of temperature.Moreover,it is verified that the monodispersity can improve ripening resistance especially for the smaller particles.However,the different performances of the ripening originating from difference of the relative standard deviation are more obvious at higher temperature than lower temperature.This temperature effect for the relative standard deviation is the inverse of that for the initial main particle size.It is indicated that the influence of dispersity of TiO_(2)(l 10)-supported Pd particles on ripening may be more sensitive at higher temperature.In this contribution,we extend the first principle kinetics to elaborate the ripening of Pd on TiO_(2)(l 10).It is expected that the information from first principle kinetics would be helpful to the study in experiments.
基金the National Key Research and Development Program of China(No.2019YFA0708203)the Center of Micro-Fabrication and Characterization(CMFC)of WNLO+2 种基金Chinese Academy of Sciences(No.IIMDKFJJ-17-09)the National Natural Science Foundation of China(Grant Nos.61704062,61774065,and 61704176)the China Postdoctoral Science Foundation(No.2016M602287).
文摘Indium gallium nitride(InGaN)based blue light-emitting diodes(LEDs)suffer from insufficient crystal quality and serious efficiency droop in large forward current.In this paper,the InGaN-based blue LEDs are grown on sputtered aluminum nitride(AlN)films to improve the device light power and weaken the efficiency droop.The effects of oxygen flow rate on the sputtering of AlN films on sapphire and device performance of blue LEDs are studied in detail.The mechanism of external quantum efficiency improvement is related to the change of V-pits density in multiple quantum wells.The external quantum efficiency of 66%and 3-V operating voltage are measured at a 40-mA forward current of with the optimal oxygen flow rate of 4 SCCM.
文摘In this paper, Bi2S3 nanorods were successfully synthesized via a facile one-pot hydrothermal method and characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy and X-ray photoelectron spectroscopy. Then the Bi2S3 nanorods were deposited on Au interdigital electrodes by dip-coating to fabricate photodetectors. The photoresponse properties using Bi2S3 nanorods as a representative system showed a significantly enhanced conductivity and the current-voltage (I-V) characteristic exhibited about ca. 2 orders of magnitude larger response and decay time was than the dark current. The estimated to be -371.66 and 386 ms, respectively, indicating Bi2S3 may be an excellent candidate for high speed and high-sensitivity photoelectrical switches and light sensitive devices.