This study aimed to enhance the utilization of agricultural waste and identify the most suitable agricultural waste materials for tomato cultivation. It utilized a locally modified substrate labeled as CK, along with ...This study aimed to enhance the utilization of agricultural waste and identify the most suitable agricultural waste materials for tomato cultivation. It utilized a locally modified substrate labeled as CK, along with five different groups of agricultural waste materials, designated as T1 (organic fertilizer: loessial soil: straw in a ratio of 4:5:1), T2 (organic fertilizer: loessial soil: straw: grains in a ratio of 3:5:1:1), T3 (organic fertilizer: loessial soil: straw: grains in a ratio of 2:5:1:2), T4 (organic fertilizer:loessial soil:straw:grains in a ratio of 1:5:1:3), and T5 ( loessial soil:straw:grains in a ratio of 5:1:4), the AquaCrop model was employed to validate soil water content and tomato growth and yield under these treatments. Furthermore, a multi-objective genetic algorithm was employed to determine the optimal agricultural waste materials that would ensure maximum tomato yield, water use efficiency (WUE), partial factor productivity of fertilizer (PFP) and sugar-acid ratio. The results indicated that the AquaCrop model reasonably simulated volumetric soil water content, tomato canopy cover, and biomass, with root mean square error (RMSE) ranges of 20.0-69.4 mm, 15.2%-25.1%, and 1.093-3.469 t/hm2, respectively. The CK group exhibited an R-squared (R2) value of 0.63 for volumetric soil water contents, while the ratio scenarios showed R2 values exceeding 0.80. The multi-objective genetic optimization algorithm identified T5 as the optimal ratio scenario, resulting in maximum tomato yield, WUE, PFP, and quality. This study offers a theoretical foundation for the efficient utilization of agricultural wastes and the production of high-quality fruits and vegetables.展开更多
In order to explore the spatial and temporal changes of runoff and sediment in the Taohe River and its driving mechanism,Spearman correlation coefficient method,Mann-Kendell mutation test method and ordered clustering...In order to explore the spatial and temporal changes of runoff and sediment in the Taohe River and its driving mechanism,Spearman correlation coefficient method,Mann-Kendell mutation test method and ordered clustering method were used to analyze the changes of runoff and sediment discharge and their driving factors in four hydrological stations along the Taohe River from 1957 to 2016.The results showed that the correlation between runoff and sediment of the four hydrological stations along the Taohe River was significant,and the correlation coefficient was 0.728-0.984.The runoff and sediment transport in the interval showed an increasing and decreasing trend.The decrease rate of runoff was 133.82%-216.17%higher than that of Xiabagou station,and the decrease rate of sediment transport was 250.49%-4766.33%higher than that of Xiabagou station.The mutation year of the Taohe River runoff occurred in 1986,and the maximum decrease was 35%.The water-sediment relationship curves of different periods showed that the sediment discharge of the four stations changed abruptly around 1990,and the maximum reduction before and after the mutation was up to 73%,and the sediment discharge in the river channel decreased significantly.The research showed that human activities were the main driving factors for the change of water-sediment relationship in the Taohe River.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.52379042)Key R&D plan of Gansu Province(Grant No.23YFFA0019)Gansu Province East-West Cooperation Project(Grant No.23CXNA0025).
文摘This study aimed to enhance the utilization of agricultural waste and identify the most suitable agricultural waste materials for tomato cultivation. It utilized a locally modified substrate labeled as CK, along with five different groups of agricultural waste materials, designated as T1 (organic fertilizer: loessial soil: straw in a ratio of 4:5:1), T2 (organic fertilizer: loessial soil: straw: grains in a ratio of 3:5:1:1), T3 (organic fertilizer: loessial soil: straw: grains in a ratio of 2:5:1:2), T4 (organic fertilizer:loessial soil:straw:grains in a ratio of 1:5:1:3), and T5 ( loessial soil:straw:grains in a ratio of 5:1:4), the AquaCrop model was employed to validate soil water content and tomato growth and yield under these treatments. Furthermore, a multi-objective genetic algorithm was employed to determine the optimal agricultural waste materials that would ensure maximum tomato yield, water use efficiency (WUE), partial factor productivity of fertilizer (PFP) and sugar-acid ratio. The results indicated that the AquaCrop model reasonably simulated volumetric soil water content, tomato canopy cover, and biomass, with root mean square error (RMSE) ranges of 20.0-69.4 mm, 15.2%-25.1%, and 1.093-3.469 t/hm2, respectively. The CK group exhibited an R-squared (R2) value of 0.63 for volumetric soil water contents, while the ratio scenarios showed R2 values exceeding 0.80. The multi-objective genetic optimization algorithm identified T5 as the optimal ratio scenario, resulting in maximum tomato yield, WUE, PFP, and quality. This study offers a theoretical foundation for the efficient utilization of agricultural wastes and the production of high-quality fruits and vegetables.
基金Supported by Gansu Youth Science and Technology Fund Program(21JR7RA778)Innovation Fund Project of Gansu Provincial Universities(2020A-186)。
文摘In order to explore the spatial and temporal changes of runoff and sediment in the Taohe River and its driving mechanism,Spearman correlation coefficient method,Mann-Kendell mutation test method and ordered clustering method were used to analyze the changes of runoff and sediment discharge and their driving factors in four hydrological stations along the Taohe River from 1957 to 2016.The results showed that the correlation between runoff and sediment of the four hydrological stations along the Taohe River was significant,and the correlation coefficient was 0.728-0.984.The runoff and sediment transport in the interval showed an increasing and decreasing trend.The decrease rate of runoff was 133.82%-216.17%higher than that of Xiabagou station,and the decrease rate of sediment transport was 250.49%-4766.33%higher than that of Xiabagou station.The mutation year of the Taohe River runoff occurred in 1986,and the maximum decrease was 35%.The water-sediment relationship curves of different periods showed that the sediment discharge of the four stations changed abruptly around 1990,and the maximum reduction before and after the mutation was up to 73%,and the sediment discharge in the river channel decreased significantly.The research showed that human activities were the main driving factors for the change of water-sediment relationship in the Taohe River.