When employing penetration ammunition to strike multi-story buildings,the detection methods using acceleration sensors suffer from signal aliasing,while magnetic detection methods are susceptible to interference from ...When employing penetration ammunition to strike multi-story buildings,the detection methods using acceleration sensors suffer from signal aliasing,while magnetic detection methods are susceptible to interference from ferromagnetic materials,thereby posing challenges in accurately determining the number of layers.To address this issue,this research proposes a layer counting method for penetration fuze that incorporates multi-source information fusion,utilizing both the temporal convolutional network(TCN)and the long short-term memory(LSTM)recurrent network.By leveraging the strengths of these two network structures,the method extracts temporal and high-dimensional features from the multi-source physical field during the penetration process,establishing a relationship between the multi-source physical field and the distance between the fuze and the target plate.A simulation model is developed to simulate the overload and magnetic field of a projectile penetrating multiple layers of target plates,capturing the multi-source physical field signals and their patterns during the penetration process.The analysis reveals that the proposed multi-source fusion layer counting method reduces errors by 60% and 50% compared to single overload layer counting and single magnetic anomaly signal layer counting,respectively.The model's predictive performance is evaluated under various operating conditions,including different ratios of added noise to random sample positions,penetration speeds,and spacing between target plates.The maximum errors in fuze penetration time predicted by the three modes are 0.08 ms,0.12 ms,and 0.16 ms,respectively,confirming the robustness of the proposed model.Moreover,the model's predictions indicate that the fitting degree for large interlayer spacings is superior to that for small interlayer spacings due to the influence of stress waves.展开更多
Brain–computer interface (BCI) systems, such as the P300 speller, enable patients to express intentions withoutnecessitating extensive training.However, the complexity of operational instructions and the slow pace of...Brain–computer interface (BCI) systems, such as the P300 speller, enable patients to express intentions withoutnecessitating extensive training.However, the complexity of operational instructions and the slow pace of characterspelling pose challenges for some patients. In this paper, an image segmentation P300 selector based on YOLOv7-mask and DeepSORT is proposed. The proposed system utilizes a camera to capture real-world objects forclassification and tracking. By applying predefined stimulation rules and object-specificmasks, the proposed systemtriggers stimuli associated with the objects displayed on the screen, inducing the generation of P300 signals in thepatient’s brain. Its video processing mechanism enables the system to identify the target the patient is focusing oneven if the object is partially obscured, overlapped, moving, or changing in number. The system alters the target’scolor display, thereby conveying the patient’s intentions to caregivers. The data analysis revealed that the selfrecognitionaccuracy of the subjects using this method was between 92% and 100%, and the cross-subject P300recognition precision was 81.9%–92.1%. This means that simple instructions such as “Do not worry, just focuson what you desire” effectively discerned the patient’s intentions using the Image Segmentation-P300 selector. Thisapproach provides cost-effective support and allows patients with communication difficulties to easily express theirneeds.展开更多
Precision grinding is a key process for realizing the use of large-aperture aspherical optical elements in laser nuclear fusion devices,large-aperture astronomical telescopes,and high-resolution space cameras.In this ...Precision grinding is a key process for realizing the use of large-aperture aspherical optical elements in laser nuclear fusion devices,large-aperture astronomical telescopes,and high-resolution space cameras.In this study,the arc envelope grinding process of large-aperture aspherical optics is investigated using a CM1500 precision grinding machine with a maximum machinable diameter ofΦ1500 mm.The form error of the aspherical workpiece induced by wheel setting errors is analytically modeled for both parallel and cross grinding.Results show that the form error is more sensitive to the wheel setting error along the feed direction than that along the lateral direction.It is a bilinear function of the feed-direction wheel setting error and the distance to the optical axis.Based on the error function above,a method to determine the wheel setting error is proposed.Subsequently,grinding tests are performed with the wheels aligned accurately.Using a newly proposed partial error compensation method with an appropriate compensation factor,a form error of 3.4μm peak-to-valley(PV)for aΦ400 mm elliptical K9 glass surface is achieved.展开更多
The impacts of hurricane disturbance and climate variability on carbon dynamics in a coastal forested wetland in South Carolina of USA were simulated using the Forest-DNDC model with a spatially explicit approach. The...The impacts of hurricane disturbance and climate variability on carbon dynamics in a coastal forested wetland in South Carolina of USA were simulated using the Forest-DNDC model with a spatially explicit approach. The model was validated using the measured biomass before and after Hurricane Hugo and the biomass inventories in 2006 and 2007, showed that the Forest- DNDC model was applicable for estimating carbon dynamics with hurricane disturbance. The simulated results indicated that Hurricane Hugo in 1989 substantially influenced carbon storage immediately after the disturbance event. The simulated net ecosystem exchange (NEE) for the 58-year period (1950-2007) indicated that the hurricane reduced CO2 sequestration due primarily to the increased decomposition of a large amount of litter and woody debris, including fallen trees (over 80% of pre-hurricane trees), debris and branches, and dead roots. The inter-annual fluctuation of soil CO2 flux showed that the climate variability interfered substantially soil carbon dynamics in the forest. The results showed that there were substantial spatial and temporal differences in CO2 flux (3.2 - 4.8 Mg·C·ha–1) and wood biomass due to the differences in physical and biogeochemical characteristics in the forest.展开更多
FEM (Finite Element Method) has been widely used to solve temperature in hot rolling. The heat gen-erating rate of electromagnetic field has been discussed in order to improve the efficiency and accuracy in the soluti...FEM (Finite Element Method) has been widely used to solve temperature in hot rolling. The heat gen-erating rate of electromagnetic field has been discussed in order to improve the efficiency and accuracy in the solution of induction heating. A new heat generating rate model was proposed and derived from the calculated results by FEM software in consideration of work frequency, source current density, and the air gap between induction coil and slab. The calculated distribution of heat generating rate in the skin depth by the model is satisfying and reliable compared with that of FEM software. Then, the mathematic model of the heat generating rate model is considered as the density of heat reservoir to solve the temperature in induction heating. Moreover, the temperature evolution of slab in induction heating from a hot rolling plant has been solved by the developed FE code and the calculated temperature has a good agreement with the measured value. Therefore, the heat generating rate model is suitable and efficiency to solve the temperature in induction heating by FEM.展开更多
This paper aims to estimate the soil organic carbon (SOC) storage in Northeast of China, identify its balance situation and changing trends under current cropping systems, and finally put forward some strategies to ...This paper aims to estimate the soil organic carbon (SOC) storage in Northeast of China, identify its balance situation and changing trends under current cropping systems, and finally put forward some strategies to keep the SOC in balance. A biogeochemical model (DNDC) for agro-ecosystem was employed to predict SOC dynamics in agricultural ecosystems at regional scale. Data on climate, soil properties, cropping systems, acreage, and management practices at county scale were collected from various sources and integrated into a GIS database to support the model runs at the regional scale. The model predicted results revealed that (1) Total SOC storage in agricultural lands in Heilongjiang, Jilin and Liaoning provinces in Northeast of China is about 1 243.48 × 10^6 t (0-30cm soil layer), respectively occupying 58.4, 25.5 and 16.1%; (2) Under the current cultivation systems, SOC is in a situation of net loss with carbon losing at a high rate of 31.22 × 10^6 t a^-1 (respectively 59.3, 25.9 and 14.8% in Heilongjiang, Jilin and Liaoning provinces) and 2.05 t ha^-1 a^-1, the situation is more serious in Heilongjiang and Jilin provinces; and (3) Protective cultivations, such as manuring, returning more residue of crop to the field, adopting no-till, are very useful for the accumulation of SOC in these regions.展开更多
Spinal cord injury (SCI) currently ranks second after mental retarda- tion among neurological disorders in terms of cost to society. Pain is a debilitating consequence of SCI related to the nature of the lesion, neu...Spinal cord injury (SCI) currently ranks second after mental retarda- tion among neurological disorders in terms of cost to society. Pain is a debilitating consequence of SCI related to the nature of the lesion, neurological structures damaged, and secondary pathophysiological changes of surviving tissues (Yezierski, 2005; D'Angelo et al., 2013).展开更多
Minimal invasion is an important trend in surgery.However,the endoscope,as one of the key devices for monitoring the process of minimally invasive surgery,is limited by its size and working space it operates in,which ...Minimal invasion is an important trend in surgery.However,the endoscope,as one of the key devices for monitoring the process of minimally invasive surgery,is limited by its size and working space it operates in,which result in a considerably narrow field of view.In particular,when a surgical instrument enters through the tool channel,the instrument occupies most of the area in an endoscopic image.This hampers the surgeon’s field of view and has a negative impact on the surgery.This study proposes a novel method for removing the occlusion caused by surgical instruments in endoscopic images by making foreground occlusions on endoscopic images transparent using image restoration and interframe information filling.Compared with unprocessed images,this method can provide a clearer field of view that is necessary for minimally invasive endoscopic surgeries and improve the quality of surgeries.Clinical endoscopic images are used to verify the feasibility of the proposed method,and the results show that the proposed method improves the visual effect of endoscopic images by removing surgical-instrument occlusions.This demonstrates the considerable potential of the proposed method for use in clinical applications.展开更多
文摘When employing penetration ammunition to strike multi-story buildings,the detection methods using acceleration sensors suffer from signal aliasing,while magnetic detection methods are susceptible to interference from ferromagnetic materials,thereby posing challenges in accurately determining the number of layers.To address this issue,this research proposes a layer counting method for penetration fuze that incorporates multi-source information fusion,utilizing both the temporal convolutional network(TCN)and the long short-term memory(LSTM)recurrent network.By leveraging the strengths of these two network structures,the method extracts temporal and high-dimensional features from the multi-source physical field during the penetration process,establishing a relationship between the multi-source physical field and the distance between the fuze and the target plate.A simulation model is developed to simulate the overload and magnetic field of a projectile penetrating multiple layers of target plates,capturing the multi-source physical field signals and their patterns during the penetration process.The analysis reveals that the proposed multi-source fusion layer counting method reduces errors by 60% and 50% compared to single overload layer counting and single magnetic anomaly signal layer counting,respectively.The model's predictive performance is evaluated under various operating conditions,including different ratios of added noise to random sample positions,penetration speeds,and spacing between target plates.The maximum errors in fuze penetration time predicted by the three modes are 0.08 ms,0.12 ms,and 0.16 ms,respectively,confirming the robustness of the proposed model.Moreover,the model's predictions indicate that the fitting degree for large interlayer spacings is superior to that for small interlayer spacings due to the influence of stress waves.
文摘Brain–computer interface (BCI) systems, such as the P300 speller, enable patients to express intentions withoutnecessitating extensive training.However, the complexity of operational instructions and the slow pace of characterspelling pose challenges for some patients. In this paper, an image segmentation P300 selector based on YOLOv7-mask and DeepSORT is proposed. The proposed system utilizes a camera to capture real-world objects forclassification and tracking. By applying predefined stimulation rules and object-specificmasks, the proposed systemtriggers stimuli associated with the objects displayed on the screen, inducing the generation of P300 signals in thepatient’s brain. Its video processing mechanism enables the system to identify the target the patient is focusing oneven if the object is partially obscured, overlapped, moving, or changing in number. The system alters the target’scolor display, thereby conveying the patient’s intentions to caregivers. The data analysis revealed that the selfrecognitionaccuracy of the subjects using this method was between 92% and 100%, and the cross-subject P300recognition precision was 81.9%–92.1%. This means that simple instructions such as “Do not worry, just focuson what you desire” effectively discerned the patient’s intentions using the Image Segmentation-P300 selector. Thisapproach provides cost-effective support and allows patients with communication difficulties to easily express theirneeds.
基金Fellowship of China National Postdoctoral Program for Innovative Talents(Grant No.BX20200268)Research Project of State Key Laboratory of Mechanical System and Vibration(Grant No.MSV202103)+1 种基金National Natural Science Foundation of China(Grant No.51720105016)Higher Education Discipline Innovation Project(Grant No.B12016).
文摘Precision grinding is a key process for realizing the use of large-aperture aspherical optical elements in laser nuclear fusion devices,large-aperture astronomical telescopes,and high-resolution space cameras.In this study,the arc envelope grinding process of large-aperture aspherical optics is investigated using a CM1500 precision grinding machine with a maximum machinable diameter ofΦ1500 mm.The form error of the aspherical workpiece induced by wheel setting errors is analytically modeled for both parallel and cross grinding.Results show that the form error is more sensitive to the wheel setting error along the feed direction than that along the lateral direction.It is a bilinear function of the feed-direction wheel setting error and the distance to the optical axis.Based on the error function above,a method to determine the wheel setting error is proposed.Subsequently,grinding tests are performed with the wheels aligned accurately.Using a newly proposed partial error compensation method with an appropriate compensation factor,a form error of 3.4μm peak-to-valley(PV)for aΦ400 mm elliptical K9 glass surface is achieved.
文摘The impacts of hurricane disturbance and climate variability on carbon dynamics in a coastal forested wetland in South Carolina of USA were simulated using the Forest-DNDC model with a spatially explicit approach. The model was validated using the measured biomass before and after Hurricane Hugo and the biomass inventories in 2006 and 2007, showed that the Forest- DNDC model was applicable for estimating carbon dynamics with hurricane disturbance. The simulated results indicated that Hurricane Hugo in 1989 substantially influenced carbon storage immediately after the disturbance event. The simulated net ecosystem exchange (NEE) for the 58-year period (1950-2007) indicated that the hurricane reduced CO2 sequestration due primarily to the increased decomposition of a large amount of litter and woody debris, including fallen trees (over 80% of pre-hurricane trees), debris and branches, and dead roots. The inter-annual fluctuation of soil CO2 flux showed that the climate variability interfered substantially soil carbon dynamics in the forest. The results showed that there were substantial spatial and temporal differences in CO2 flux (3.2 - 4.8 Mg·C·ha–1) and wood biomass due to the differences in physical and biogeochemical characteristics in the forest.
文摘FEM (Finite Element Method) has been widely used to solve temperature in hot rolling. The heat gen-erating rate of electromagnetic field has been discussed in order to improve the efficiency and accuracy in the solution of induction heating. A new heat generating rate model was proposed and derived from the calculated results by FEM software in consideration of work frequency, source current density, and the air gap between induction coil and slab. The calculated distribution of heat generating rate in the skin depth by the model is satisfying and reliable compared with that of FEM software. Then, the mathematic model of the heat generating rate model is considered as the density of heat reservoir to solve the temperature in induction heating. Moreover, the temperature evolution of slab in induction heating from a hot rolling plant has been solved by the developed FE code and the calculated temperature has a good agreement with the measured value. Therefore, the heat generating rate model is suitable and efficiency to solve the temperature in induction heating by FEM.
文摘This paper aims to estimate the soil organic carbon (SOC) storage in Northeast of China, identify its balance situation and changing trends under current cropping systems, and finally put forward some strategies to keep the SOC in balance. A biogeochemical model (DNDC) for agro-ecosystem was employed to predict SOC dynamics in agricultural ecosystems at regional scale. Data on climate, soil properties, cropping systems, acreage, and management practices at county scale were collected from various sources and integrated into a GIS database to support the model runs at the regional scale. The model predicted results revealed that (1) Total SOC storage in agricultural lands in Heilongjiang, Jilin and Liaoning provinces in Northeast of China is about 1 243.48 × 10^6 t (0-30cm soil layer), respectively occupying 58.4, 25.5 and 16.1%; (2) Under the current cultivation systems, SOC is in a situation of net loss with carbon losing at a high rate of 31.22 × 10^6 t a^-1 (respectively 59.3, 25.9 and 14.8% in Heilongjiang, Jilin and Liaoning provinces) and 2.05 t ha^-1 a^-1, the situation is more serious in Heilongjiang and Jilin provinces; and (3) Protective cultivations, such as manuring, returning more residue of crop to the field, adopting no-till, are very useful for the accumulation of SOC in these regions.
文摘Spinal cord injury (SCI) currently ranks second after mental retarda- tion among neurological disorders in terms of cost to society. Pain is a debilitating consequence of SCI related to the nature of the lesion, neurological structures damaged, and secondary pathophysiological changes of surviving tissues (Yezierski, 2005; D'Angelo et al., 2013).
基金supported by the National Key Research and Development Program of China(2022YFB4703000)the National Natural Science Foundation of China-Shenzhen Robotics Research Center Project(U2013209).
文摘Minimal invasion is an important trend in surgery.However,the endoscope,as one of the key devices for monitoring the process of minimally invasive surgery,is limited by its size and working space it operates in,which result in a considerably narrow field of view.In particular,when a surgical instrument enters through the tool channel,the instrument occupies most of the area in an endoscopic image.This hampers the surgeon’s field of view and has a negative impact on the surgery.This study proposes a novel method for removing the occlusion caused by surgical instruments in endoscopic images by making foreground occlusions on endoscopic images transparent using image restoration and interframe information filling.Compared with unprocessed images,this method can provide a clearer field of view that is necessary for minimally invasive endoscopic surgeries and improve the quality of surgeries.Clinical endoscopic images are used to verify the feasibility of the proposed method,and the results show that the proposed method improves the visual effect of endoscopic images by removing surgical-instrument occlusions.This demonstrates the considerable potential of the proposed method for use in clinical applications.