Lake is an important part of the natural ecosystem, and its morphological characteristics reflect the capacity of lake regulation and storage, the strength of material migration, and the characteristics of shoreline d...Lake is an important part of the natural ecosystem, and its morphological characteristics reflect the capacity of lake regulation and storage, the strength of material migration, and the characteristics of shoreline development. In most existing studies, remote sensing images are used to quantify the morphological characteristics of lakes. However, the extraction accuracy of lake water is greatly affected by cloud cover and vegetation cover, and the inversion accuracy of lake elevation data is poor, which cannot accurately describe the response relationship of lake landscape morphology with water level change. Therefore, this paper takes Tonle Sap Lake as the research object, which is the largest natural freshwater lake in Southeast Asia. DEM is constructed based on high-resolution measured topographic data, and morphological indicators such as lake area, lake shoreline length, perimeter area ratio, longest axis length, maximum width, shoreline development index, lake shape complexity, compactness ratio and form ratio are adopted to researching the evolution law of high water overflows and low water outbursts quantitatively, and clarifying the variation characteristics of landscape morphology with water level gradient in Tonle Sap Lake. The research results have important theoretical significance for the scientific utilization of Tonle Sap Lake water resources and the protection of the lake ecosystem.展开更多
In this paper, by using the atomic decomposition of the weighted weak Hardy space WH;(R;), the authors discuss a class of multilinear oscillatory singular integrals and obtain their boundedness from the weighted wea...In this paper, by using the atomic decomposition of the weighted weak Hardy space WH;(R;), the authors discuss a class of multilinear oscillatory singular integrals and obtain their boundedness from the weighted weak Hardy space WH;(R;) to the weighted weak Lebesgue space WL;(R;) for ω∈A;(R;).展开更多
To investigate the influence of asymmetric tidal mixing(ATM) on sediment dynamics in tidal estuaries, we developed a vertically one-dimensional idealized analytical model, in which the M_2 tidal flow, residual flow an...To investigate the influence of asymmetric tidal mixing(ATM) on sediment dynamics in tidal estuaries, we developed a vertically one-dimensional idealized analytical model, in which the M_2 tidal flow, residual flow and suspended sediment concentration(SSC) are described. Model solutions are obtained in terms of tidallyaveraged, and tidally-varying components(M_2 and M_4) of both hydrodynamics and sediment dynamics. The effect of ATM was considered with a time-varying eddy viscosity and time-varying eddy diffusivity of SSC. For the first time, an analytical solution for SSC variation driven by varying diffusivity could be derived. The model was applied to York River Estuary, where higher(or lower) eddy diffusivity was observed during flood(or ebb) in a previous study. The model results agreed well with the observation in both hydrodynamics and sediment dynamics. The vertical sediment distribution under the influence of ATM was analyzed in terms of the phase lag of the M_2 component of SSC relative to tidal flow. The phase lag increases significantly in estuaries with typical ATM(higher diffusivity during flood and lower diffusivity during ebb) for the case of seaward-directed net bottom shear stress(e.g., strong river discharge). In contrary, the phase lag is reduced by ATM, if the tidally-averaged bottom shear stress is landward(e.g., strong horizontal density gradient). The dynamics of sediment transport was analyzed as a function of ATM phase lag to identify the time of highest sediment diffusivity, as well as a function of the residual flow, to evaluate the relative importance of seaward and landward residual flows. In estuaries with relative strong fresh water discharge or weak tidal forcing(in case of flood season or neap tide), the near bottom SSC could be higher during ebb than during flood, since the bottom shear stress is higher during ebb due to seaward residual flow. However, landward net sediment transport can be expected in these estuaries in case of a typical ATM, because higher diffusivity causes higher SSC and landward transport during the flood period, while both SSC and seaward transport could be lower during ebb. On the contrary, seaward sediment transport can be expected in estuaries with landward tidally mean bottom shear stress in case of a reverse ATM,where sediment diffusivity is higher during the ebb.展开更多
Reducing oxidative stress and hepatoprotective effect of Pu-erh tea water extracts on rats fed with high-fat diet were researched for explaining health care of Pu-erh tea.Fifty SD rats were divided into five groups.Th...Reducing oxidative stress and hepatoprotective effect of Pu-erh tea water extracts on rats fed with high-fat diet were researched for explaining health care of Pu-erh tea.Fifty SD rats were divided into five groups.The body weight was measured once a day.The malondialdehyde(MDA)and glucose(Glu)levels and the activities of alanine aminotransferase(ALT),aspartate aminotransferase(AST),nitric oxide synthase(NOS),and pyruvate kinase(PK)in serum were determined.Furthermore,the hepatic glycogen level(HGL)and the activities of hepatic total superoxide dismutase(T-SOD),catalase(CAT),and glutathione peroxidase(GSH-Px)were also measured after continuous administration for 12 weeks.The result demonstrated that Pu-erh extract caused the decreases in body weight,fat index,MDA and NOS levels,and the increases in hepatic T-SOD,CAT and GSH-Px activities,indicating that the extract may be due to inhibiting the increases of body weight and fat index,reducing oxidant stress state and inhibiting lipid peroxidation,thus decreasing the activities of ALT and AST,and protecting the liver in rat.Meanwhile,the extracts could increase the production of hepatic glycogen and the activity of PK,and reduce glucose level,protecting the liver from the diseases associated with type II diabetes.展开更多
Tonle Sap Lake is the largest river-connected lake, buffer area and ecological zone of Mekong River, which plays a huge role in dispelling flood peak and compensating water, and the conservation of biological diversit...Tonle Sap Lake is the largest river-connected lake, buffer area and ecological zone of Mekong River, which plays a huge role in dispelling flood peak and compensating water, and the conservation of biological diversity. The river-lake relationship between Mekong River and Tonle Sap Lake is unique and has always been a major focus in the international community. The land terrain and under-water topography were used to analyze the morphological characteristics of Cambodia Mekong Delta and Tonle Sap Lake. Long series of hydrological data of river-lake controlling stations were used to analyze the water level variation characteristics and water volume exchange pattern between Mekong River and Tonle Sap Lake, and the response relationship to river-lake morphological characteristics were also researched. The results show that: Cambodia Mekong Delta and Tonle Sap Lake Area is low-lying and flat with gentle channel gradient and water surface gradient, making the relationship between water level and area (or volume) smooth. The channel storage capacity of Mekong River and Tonle Sap River is not enough compared to the inflow, so vast flooding plain is extremely prone to be inundated, making the flood relationships between the left and right banks become very complicated. Tonle Sap Lake is a seasonal freshwater lake with water flowing in and flowing out, and the timing and intensity of water exchange with Mekong River are closely related to the water flow resistance at the exit section of Tonle Sap Lake and the cross-sectional area of Tonle Sap River, which can be reflected by the river-lake water level difference and the water level of Tonle Sap River. Affected by the river-lake morphological characteristics, the water exchange intensity between Mekong River and Tonle Sap Lake is great. Tonle Sap Lake not only stores 14.4% of flood volume (39.7 billion m3) from the Mekong River every year, but also supplies 29.7% of dry water (69.4 billion m3) to the Mekong River. Influenced by the adjustment of the floodplain, the water level fluctuation of Mekong River and Tonle Sap Lake is slow, and the rising and droop rates of water level are positively correlated with the floodplain storage area. The research results will help to understand the relationship mechanism between Mekong River and Tonle Sap Lake and provide a scientific basis for the comprehensive governance of Cambodia Mekong Delta and Tonle Sap Lake Area.展开更多
Electric double-layer capacitors(EDLCs) are advanced electrochemical devices for energy storage and have attracted strong interest due to their outstanding properties. Rational optimization of electrode–electrolyte i...Electric double-layer capacitors(EDLCs) are advanced electrochemical devices for energy storage and have attracted strong interest due to their outstanding properties. Rational optimization of electrode–electrolyte interactions is of vital importance to enhance device performance for practical applications. Molecular dynamics(MD) simulations could provide theoretical guidelines for the optimal design of electrodes and the improvement of capacitive performances, e.g., energy density and power density. Here we discuss recent MD simulation studies on energy storage performance of electrode materials containing porous to nanostructures. The energy storage properties are related to the electrode structures, including electrode geometry and electrode modifications. Altering electrode geometry, i.e., pore size and surface topography,can influence EDL capacitance. We critically examine different types of electrode modifications, such as altering the arrangement of carbon atoms, doping heteroatoms and defects, which can change the quantum capacitance. The enhancement of power density can be achieved by the intensified ion dynamics and shortened ion pathway.Rational control of the electrode morphology helps improve the ion dynamics by decreasing the ion diffusion pathway. Tuning the surface properties(e.g., the affinity between the electrode and the ions) can affect the ionpacking phenomena. Our critical analysis helps enhance the energy and power densities of EDLCs by modulating the corresponding electrode structures and surface properties.展开更多
Suppose that G is a finite group and H is a subgroup of G. H is said to be s-quasinormally embedded in G if for each prime p dividing │H│, a Sylow p-subgroup of H is also a Sylow p-subgroup of some s-quasinormal sub...Suppose that G is a finite group and H is a subgroup of G. H is said to be s-quasinormally embedded in G if for each prime p dividing │H│, a Sylow p-subgroup of H is also a Sylow p-subgroup of some s-quasinormal subgroup of G; H is called c^*-quasinormally embedded in G if there is a subgroup T of G such that G = HT and HCqT is s-quasinormally embedded in G. We investigate the influence of c^*-quasinormally embedded subgroups on the structure of finite groups. Some recent results are generalized.展开更多
文摘Lake is an important part of the natural ecosystem, and its morphological characteristics reflect the capacity of lake regulation and storage, the strength of material migration, and the characteristics of shoreline development. In most existing studies, remote sensing images are used to quantify the morphological characteristics of lakes. However, the extraction accuracy of lake water is greatly affected by cloud cover and vegetation cover, and the inversion accuracy of lake elevation data is poor, which cannot accurately describe the response relationship of lake landscape morphology with water level change. Therefore, this paper takes Tonle Sap Lake as the research object, which is the largest natural freshwater lake in Southeast Asia. DEM is constructed based on high-resolution measured topographic data, and morphological indicators such as lake area, lake shoreline length, perimeter area ratio, longest axis length, maximum width, shoreline development index, lake shape complexity, compactness ratio and form ratio are adopted to researching the evolution law of high water overflows and low water outbursts quantitatively, and clarifying the variation characteristics of landscape morphology with water level gradient in Tonle Sap Lake. The research results have important theoretical significance for the scientific utilization of Tonle Sap Lake water resources and the protection of the lake ecosystem.
基金supported by the National Natural Science Foundation of China(Grant No.11501233)China Postdoctoral Science Foundation(No.2015M572327)+2 种基金Humanities and Social Sciences Program of the Ministry of Education(No.15YJC630053)Natural Science Foundation of Anhui Province(No.1408085MA08 and No.1508085SMA204)Natural Science Foundation of the Education Department of Anhui Province(No.KJ2015A335 and No.KJ2015A270)
文摘In this paper, by using the atomic decomposition of the weighted weak Hardy space WH;(R;), the authors discuss a class of multilinear oscillatory singular integrals and obtain their boundedness from the weighted weak Hardy space WH;(R;) to the weighted weak Lebesgue space WL;(R;) for ω∈A;(R;).
基金The National Natural Science Foundation of China under contract Nos U2040220, 52079069, 52009066, 52379069,52009079, 42006156 and U2240220the CRSRI Open Research Program under contract No. CKWV20221003/KY+2 种基金the Open Research Program of Hubei Key Laboratory of Intelligent Yangtze and Hydroelectric Science under contract No. ZH2102000109the Outstanding Young and Middle-aged Scientific and Technological Innovation Team in Universities of Hubei Province under contract No. T2021003the Hubei Province Chutian Scholar Program (granted to Andreas Lorke)。
文摘To investigate the influence of asymmetric tidal mixing(ATM) on sediment dynamics in tidal estuaries, we developed a vertically one-dimensional idealized analytical model, in which the M_2 tidal flow, residual flow and suspended sediment concentration(SSC) are described. Model solutions are obtained in terms of tidallyaveraged, and tidally-varying components(M_2 and M_4) of both hydrodynamics and sediment dynamics. The effect of ATM was considered with a time-varying eddy viscosity and time-varying eddy diffusivity of SSC. For the first time, an analytical solution for SSC variation driven by varying diffusivity could be derived. The model was applied to York River Estuary, where higher(or lower) eddy diffusivity was observed during flood(or ebb) in a previous study. The model results agreed well with the observation in both hydrodynamics and sediment dynamics. The vertical sediment distribution under the influence of ATM was analyzed in terms of the phase lag of the M_2 component of SSC relative to tidal flow. The phase lag increases significantly in estuaries with typical ATM(higher diffusivity during flood and lower diffusivity during ebb) for the case of seaward-directed net bottom shear stress(e.g., strong river discharge). In contrary, the phase lag is reduced by ATM, if the tidally-averaged bottom shear stress is landward(e.g., strong horizontal density gradient). The dynamics of sediment transport was analyzed as a function of ATM phase lag to identify the time of highest sediment diffusivity, as well as a function of the residual flow, to evaluate the relative importance of seaward and landward residual flows. In estuaries with relative strong fresh water discharge or weak tidal forcing(in case of flood season or neap tide), the near bottom SSC could be higher during ebb than during flood, since the bottom shear stress is higher during ebb due to seaward residual flow. However, landward net sediment transport can be expected in these estuaries in case of a typical ATM, because higher diffusivity causes higher SSC and landward transport during the flood period, while both SSC and seaward transport could be lower during ebb. On the contrary, seaward sediment transport can be expected in estuaries with landward tidally mean bottom shear stress in case of a reverse ATM,where sediment diffusivity is higher during the ebb.
文摘Reducing oxidative stress and hepatoprotective effect of Pu-erh tea water extracts on rats fed with high-fat diet were researched for explaining health care of Pu-erh tea.Fifty SD rats were divided into five groups.The body weight was measured once a day.The malondialdehyde(MDA)and glucose(Glu)levels and the activities of alanine aminotransferase(ALT),aspartate aminotransferase(AST),nitric oxide synthase(NOS),and pyruvate kinase(PK)in serum were determined.Furthermore,the hepatic glycogen level(HGL)and the activities of hepatic total superoxide dismutase(T-SOD),catalase(CAT),and glutathione peroxidase(GSH-Px)were also measured after continuous administration for 12 weeks.The result demonstrated that Pu-erh extract caused the decreases in body weight,fat index,MDA and NOS levels,and the increases in hepatic T-SOD,CAT and GSH-Px activities,indicating that the extract may be due to inhibiting the increases of body weight and fat index,reducing oxidant stress state and inhibiting lipid peroxidation,thus decreasing the activities of ALT and AST,and protecting the liver in rat.Meanwhile,the extracts could increase the production of hepatic glycogen and the activity of PK,and reduce glucose level,protecting the liver from the diseases associated with type II diabetes.
文摘Tonle Sap Lake is the largest river-connected lake, buffer area and ecological zone of Mekong River, which plays a huge role in dispelling flood peak and compensating water, and the conservation of biological diversity. The river-lake relationship between Mekong River and Tonle Sap Lake is unique and has always been a major focus in the international community. The land terrain and under-water topography were used to analyze the morphological characteristics of Cambodia Mekong Delta and Tonle Sap Lake. Long series of hydrological data of river-lake controlling stations were used to analyze the water level variation characteristics and water volume exchange pattern between Mekong River and Tonle Sap Lake, and the response relationship to river-lake morphological characteristics were also researched. The results show that: Cambodia Mekong Delta and Tonle Sap Lake Area is low-lying and flat with gentle channel gradient and water surface gradient, making the relationship between water level and area (or volume) smooth. The channel storage capacity of Mekong River and Tonle Sap River is not enough compared to the inflow, so vast flooding plain is extremely prone to be inundated, making the flood relationships between the left and right banks become very complicated. Tonle Sap Lake is a seasonal freshwater lake with water flowing in and flowing out, and the timing and intensity of water exchange with Mekong River are closely related to the water flow resistance at the exit section of Tonle Sap Lake and the cross-sectional area of Tonle Sap River, which can be reflected by the river-lake water level difference and the water level of Tonle Sap River. Affected by the river-lake morphological characteristics, the water exchange intensity between Mekong River and Tonle Sap Lake is great. Tonle Sap Lake not only stores 14.4% of flood volume (39.7 billion m3) from the Mekong River every year, but also supplies 29.7% of dry water (69.4 billion m3) to the Mekong River. Influenced by the adjustment of the floodplain, the water level fluctuation of Mekong River and Tonle Sap Lake is slow, and the rising and droop rates of water level are positively correlated with the floodplain storage area. The research results will help to understand the relationship mechanism between Mekong River and Tonle Sap Lake and provide a scientific basis for the comprehensive governance of Cambodia Mekong Delta and Tonle Sap Lake Area.
基金supported by the National Natural Science Foundation of China (No. 51722604)Zhejiang Provincial Natural Science Foundation of China (No. LR17E060002)
文摘Electric double-layer capacitors(EDLCs) are advanced electrochemical devices for energy storage and have attracted strong interest due to their outstanding properties. Rational optimization of electrode–electrolyte interactions is of vital importance to enhance device performance for practical applications. Molecular dynamics(MD) simulations could provide theoretical guidelines for the optimal design of electrodes and the improvement of capacitive performances, e.g., energy density and power density. Here we discuss recent MD simulation studies on energy storage performance of electrode materials containing porous to nanostructures. The energy storage properties are related to the electrode structures, including electrode geometry and electrode modifications. Altering electrode geometry, i.e., pore size and surface topography,can influence EDL capacitance. We critically examine different types of electrode modifications, such as altering the arrangement of carbon atoms, doping heteroatoms and defects, which can change the quantum capacitance. The enhancement of power density can be achieved by the intensified ion dynamics and shortened ion pathway.Rational control of the electrode morphology helps improve the ion dynamics by decreasing the ion diffusion pathway. Tuning the surface properties(e.g., the affinity between the electrode and the ions) can affect the ionpacking phenomena. Our critical analysis helps enhance the energy and power densities of EDLCs by modulating the corresponding electrode structures and surface properties.
基金This work was supported in part by the National Natural Science Foundation of China (Grant No. 11071229) and the Natural Science Foundation the Jiangsu Higher Education Institutions (Grant No. J0KJD110004).
文摘Suppose that G is a finite group and H is a subgroup of G. H is said to be s-quasinormally embedded in G if for each prime p dividing │H│, a Sylow p-subgroup of H is also a Sylow p-subgroup of some s-quasinormal subgroup of G; H is called c^*-quasinormally embedded in G if there is a subgroup T of G such that G = HT and HCqT is s-quasinormally embedded in G. We investigate the influence of c^*-quasinormally embedded subgroups on the structure of finite groups. Some recent results are generalized.