High-performance and low-cost gas sensors are highly desirable and involved in industrial production and environmental detection.The combination of highly conductive MXene and metal oxide materials is a promising stra...High-performance and low-cost gas sensors are highly desirable and involved in industrial production and environmental detection.The combination of highly conductive MXene and metal oxide materials is a promising strategy to further improve the sensing performances.In this study,the hollow SnO_(2)nanospheres and few-layer MXene are assembled rationally via facile electrostatic synthesis processes,then the SnO_(2)/Ti_(3)C_(2)T_(x)nanocomposites were obtained.Compared with that based on either pure SnO_(2)nanoparticles or hollow nanospheres of SnO_(2),the SnO_(2)/Ti_(3)C_(2)T_(x)composite-based sensor exhibits much better sensing performances such as higher response(36.979),faster response time(5 s),and much improved selectivity as well as stability(15 days)to 100ppm C2H5OH at low working temperature(200°C).The improved sensing performances are mainly attributed to the large specific surface area and significantly increased oxygen vacancy concentration,which provides a large number of active sites for gas adsorption and surface catalytic reaction.In addition,the heterostructure interfaces between SnO_(2)hollow spheres and MXene layers are beneficial to gas sensing behaviors due to the synergistic effect.展开更多
Highly safe and efficient rechargeable lithium batteries have become an indispensable component of the intelligent society powering smart electronics and electric vehicles.This review summarizes the formation principl...Highly safe and efficient rechargeable lithium batteries have become an indispensable component of the intelligent society powering smart electronics and electric vehicles.This review summarizes the formation principle,chemical compositions,and theoretical models of the solid electrolyte interphase(SEI)on the anode in the lithium battery,involving the functions and influences of the electroactive materials.The discrepancies of the SEI on different kinds of anode materials,as well as the choice and design of the electrolytes are detailedly clarified.Furthermore,the design strategies to obtain a stable and efficient SEI are outlined and discussed.Last but not least,the challenges and perspectives of artificial SEI technology are briefly proposed for the development of high-efficiency batteries in practice.展开更多
基金This work is supported partially by the project of the State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources(Nos.LAPS21004,LAPS202114)National Natural Science Foundation of China(Nos.52272200,51972110,52102245 and 52072121)+6 种基金Beijing Science and Technology Project(No.Z211100004621010)Beijing Natural Science Foundation(Nos.2222076,2222077)Hebei Natural Science Foundation(No.E2022502022)Huaneng Group Headquarters Science and Technology Project(No.HNKJ20-H88)2022 Strategic Research Key Project of Science and Technology Commission of the Ministry of Education,China Postdoctoral Science Foundation(No.2022M721129)the Fundamental Research Funds for the Central Universities(Nos.2022MS030,2021MS028,2020MS023,2020MS028)the NCEPU“Double First-Class”Program.This research was also supported by Brain Pool program funded by the Ministry of Science and ICT through the National Research Foundation of Korea(No.2021H1D3A2A01100019).
文摘High-performance and low-cost gas sensors are highly desirable and involved in industrial production and environmental detection.The combination of highly conductive MXene and metal oxide materials is a promising strategy to further improve the sensing performances.In this study,the hollow SnO_(2)nanospheres and few-layer MXene are assembled rationally via facile electrostatic synthesis processes,then the SnO_(2)/Ti_(3)C_(2)T_(x)nanocomposites were obtained.Compared with that based on either pure SnO_(2)nanoparticles or hollow nanospheres of SnO_(2),the SnO_(2)/Ti_(3)C_(2)T_(x)composite-based sensor exhibits much better sensing performances such as higher response(36.979),faster response time(5 s),and much improved selectivity as well as stability(15 days)to 100ppm C2H5OH at low working temperature(200°C).The improved sensing performances are mainly attributed to the large specific surface area and significantly increased oxygen vacancy concentration,which provides a large number of active sites for gas adsorption and surface catalytic reaction.In addition,the heterostructure interfaces between SnO_(2)hollow spheres and MXene layers are beneficial to gas sensing behaviors due to the synergistic effect.
基金supported partially by the project of the State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources(Nos.LAPS21004 and LAPS202114)National Natural Science Foundation of China(Nos.52272200,51972110,52102245,and 52072121)+6 种基金Beijing Science and Technology Project(No.Z211100004621010)Beijing Natural Science Foundation(Nos.2222076 and 2222077)Hebei Natural Science Foundation(No.E2022502022)Huaneng Group Headquarters Science and Technology Project((No.HNKJ20-H88)2022 Strategic Research Key Project of Science and Technology Commission of the Ministry of Education,China Postdoctoral Science Foundation(No.2022M721129)the Fundamental Research Funds for the Central Universities(Nos.2022MS030,2021MS028,2020MS023,and 2020MS028)the NCEPU“Double First-Class”Program.
文摘Highly safe and efficient rechargeable lithium batteries have become an indispensable component of the intelligent society powering smart electronics and electric vehicles.This review summarizes the formation principle,chemical compositions,and theoretical models of the solid electrolyte interphase(SEI)on the anode in the lithium battery,involving the functions and influences of the electroactive materials.The discrepancies of the SEI on different kinds of anode materials,as well as the choice and design of the electrolytes are detailedly clarified.Furthermore,the design strategies to obtain a stable and efficient SEI are outlined and discussed.Last but not least,the challenges and perspectives of artificial SEI technology are briefly proposed for the development of high-efficiency batteries in practice.