Ni was effectively recovered from spent electroless nickel (EN) plating baths by forming a nano-nickel coated activated carbon composite. With the aid of ultrasonication, melamine- formaldehyde-tetraoxalyl-ethylened...Ni was effectively recovered from spent electroless nickel (EN) plating baths by forming a nano-nickel coated activated carbon composite. With the aid of ultrasonication, melamine- formaldehyde-tetraoxalyl-ethylenediamine chelating resins were grafted on activated carbon (MFT/AG). PdC12 sol was adsorbed on MFT/AC, which was then immersed in spent electroless nickel plating bath; then nano-nickel could be reduced by ascorbic acid to form a nano-nickel coating on the activated carbon composite (Ni/AC) in situ. The materials present were carefully examined by Fourier transform infrared spectroscopy, X-ray diffraction, field emission scanning electron microscopy, X-ray photoelectron spectroscopy and electro- chemistry techniques. The resins were well distributed on the inside and outside surfaces of activated carbon with a size of 120 ± 30 nm in MFT/AC, and a great deal of nano-nickel particles were evenly deposited with a size of 3.8 ± 1.1 nm in Ni/MFT. Moreover, Ni/AC was successfully used as a catalyst for ultrasonic degradation of 2.6-dichloronhenol.展开更多
Atherosclerosis(AS)has emerged as one of the prevalent arterial vascular diseases characterized by plaque and inflammation,primarily causing disability and mortality globally.Drug therapy remains the main treatment fo...Atherosclerosis(AS)has emerged as one of the prevalent arterial vascular diseases characterized by plaque and inflammation,primarily causing disability and mortality globally.Drug therapy remains the main treatment for AS.However,a series of obstacles hinder effective drug delivery.Nature,from natural micro-/nano-structural biological particles like natural cells and extracellular vesicles to the distinctions between the normal and pathological microenvironment,offers compelling solutions for efficient drug delivery.Nature-inspired nanocarriers of synthetic stimulus-responsive materials and natural components,such as lipids,proteins and membrane structures,have emerged as promising candidates for fulfilling drug delivery needs.These nanocarriers offer several advantages,including prolonged blood circulation,targeted plaque delivery,targeted specific cells delivery and controlled drug release at the action site.In this review,we discuss the nature-inspired nanocarriers which leverage the natural properties of cells or the microenvironment to improve atherosclerotic drug therapy.Finally,we provide an overview of the challenges and opportunities of applying these innovative nature-inspired nanocarriers.展开更多
基金supported by the National Natural Science Foundation of China (Nos. 21076054 and 21174001)the Natural Science Important Foundation of Educational Commission of Anhui Province (Nos. 2010AJZR-85 and 2011AJZR-87)+1 种基金the Study Foundation of New Product and Technology of Anhui Economic and Information Technology Commission (No. 2012AHST0797)the National College Student Innovation Fund (Nos. 201210359034, 2013CXSY327, and 2013CXSY366)
文摘Ni was effectively recovered from spent electroless nickel (EN) plating baths by forming a nano-nickel coated activated carbon composite. With the aid of ultrasonication, melamine- formaldehyde-tetraoxalyl-ethylenediamine chelating resins were grafted on activated carbon (MFT/AG). PdC12 sol was adsorbed on MFT/AC, which was then immersed in spent electroless nickel plating bath; then nano-nickel could be reduced by ascorbic acid to form a nano-nickel coating on the activated carbon composite (Ni/AC) in situ. The materials present were carefully examined by Fourier transform infrared spectroscopy, X-ray diffraction, field emission scanning electron microscopy, X-ray photoelectron spectroscopy and electro- chemistry techniques. The resins were well distributed on the inside and outside surfaces of activated carbon with a size of 120 ± 30 nm in MFT/AC, and a great deal of nano-nickel particles were evenly deposited with a size of 3.8 ± 1.1 nm in Ni/MFT. Moreover, Ni/AC was successfully used as a catalyst for ultrasonic degradation of 2.6-dichloronhenol.
基金supported by the National Natural Science Foundation of China(NSFC 32071323 and 32271410)Program for Innovative Research Team in Science and Technology in Fujian Province University,Scientific Research Funds of Huaqiao University(22BS125).
文摘Atherosclerosis(AS)has emerged as one of the prevalent arterial vascular diseases characterized by plaque and inflammation,primarily causing disability and mortality globally.Drug therapy remains the main treatment for AS.However,a series of obstacles hinder effective drug delivery.Nature,from natural micro-/nano-structural biological particles like natural cells and extracellular vesicles to the distinctions between the normal and pathological microenvironment,offers compelling solutions for efficient drug delivery.Nature-inspired nanocarriers of synthetic stimulus-responsive materials and natural components,such as lipids,proteins and membrane structures,have emerged as promising candidates for fulfilling drug delivery needs.These nanocarriers offer several advantages,including prolonged blood circulation,targeted plaque delivery,targeted specific cells delivery and controlled drug release at the action site.In this review,we discuss the nature-inspired nanocarriers which leverage the natural properties of cells or the microenvironment to improve atherosclerotic drug therapy.Finally,we provide an overview of the challenges and opportunities of applying these innovative nature-inspired nanocarriers.