期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Evaluating the Capabilities of Soil Enthalpy, Soil Moisture and Soil Temperature in Predicting Seasonal Precipitation 被引量:3
1
作者 changyu zhao Haishan CHEN Shanlei SUN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2018年第4期445-456,共12页
Soil enthalpy (H) contains the combined effects of both soil moisture (w) and soil temperature (T) in the land surface hydrothermal process. In this study, the sensitivities of H to w and T are investigated usin... Soil enthalpy (H) contains the combined effects of both soil moisture (w) and soil temperature (T) in the land surface hydrothermal process. In this study, the sensitivities of H to w and T are investigated using the multi-linear regression method. Results indicate that T generally makes positive contributions to H, while w exhibits different (positive or negative) impacts due to soil ice effects. For example, w negatively contributes to H if soil contains more ice; however, after soil ice melts, w exerts positive contributions. In particular, due to lower w interannual variabilities in the deep soil layer (i.e., the fifth layer), H is more sensitive to T than to w. Moreover, to compare the potential capabilities of H, w and T in precipitation (P) prediction, the Huanghe-Huaihe Basin (HHB) and Southeast China (SEC), with similar sensitivities of H to w and T, are selected. Analyses show that, despite similar spatial distributions of H-P and T-P correlation coefficients, the former values are always higher than the latter ones. Furthermore, H provides the most effective signals for P prediction over HHB and SEC, i.e., a significant leading correlation between May H and early summer (June) P. In summary, H, which integrates the effects of T and w as an independent variable, has greater capabilities in monitoring land surface heating and improving seasonal P prediction relative to individual land surface factors (e.g., T and w). 展开更多
关键词 seasonal precipitation prediction land surface process soil enthalpy soil moisture soil temperature
下载PDF
One-year clinical study of NeuroR egen scaffold implantation following scar resection in complete chronic spinal cord injury patients 被引量:18
2
作者 Zhifeng Xiao Fengwu Tang +15 位作者 Jiaguang Tang Huilin Yang Yannan zhao Bing Chen Sufang Han Nuo Wang Xing Li Shixiang Cheng Guang Han changyu zhao Xiaoxiong Yang Yumei Chen Qin Shi Shuxun Hou Sai Zhang Jianwu Dai 《Science China(Life Sciences)》 SCIE CAS CSCD 2016年第7期647-655,共9页
The objective of this clinical study was to assess the safety and feasibility of the collagen scaffold, Neuro Regen scaffold, one year after scar tissue resection and implantation. Scar tissue is a physical and chemic... The objective of this clinical study was to assess the safety and feasibility of the collagen scaffold, Neuro Regen scaffold, one year after scar tissue resection and implantation. Scar tissue is a physical and chemical barrier that prevents neural regeneration. However, identification of scar tissue is still a major challenge. In this study, the nerve electrophysiology method was used to distinguish scar tissue from normal neural tissue, and then different lengths of scars ranging from 0.5–4.5 cm were surgically resected in five complete chronic spinal cord injury(SCI) patients. The NeuroR egen scaffold along with autologous bone marrow mononuclear cells(BMMCs), which have been proven to promote neural regeneration and SCI recovery in animal models, were transplanted into the gap in the spinal cord following scar tissue resection. No obvious adverse effects related to scar resection or Neuro Regen scaffold transplantation were observed immediately after surgery or at the 12-month follow-up. In addition, patients showed partially autonomic nervous function improvement, and the recovery of somatosensory evoked potentials(SSEP) from the lower limbs was also detected. The results indicate that scar resection and Neuro Regen scaffold transplantation could be a promising clinical approach to treating SCI. 展开更多
关键词 脊髓损伤 瘢痕 支架 患者 临床 慢性 骨髓单个核细胞 神经组织
原文传递
Long-term clinical observation of patients with acute and chronic complete spinal cord injury after transplantation of Neuro Regen scaffold 被引量:4
3
作者 Fengwu Tang Jiaguang Tang +21 位作者 Yannan zhao Jiaojiao Zhang Zhifeng Xiao Bing Chen Guang Han Na Yin Xianfeng Jiang changyu zhao Shixiang Cheng Ziqiang Wang Yumei Chen Qiaoling Chen Keran Song Zhiwei Zhang Junjie Niu Lingjun Wang Qin Shi Liang Chen Huilin Yang Shuxun Hou Sai Zhang Jianwu Dai 《Science China(Life Sciences)》 SCIE CAS CSCD 2022年第5期909-926,共18页
Spinal cord injury(SCI)often results in an inhibitory environment at the injury site.In our previous studies,transplantation of a scaffold combined with stem cells was proven to induce neural regeneration in animal mo... Spinal cord injury(SCI)often results in an inhibitory environment at the injury site.In our previous studies,transplantation of a scaffold combined with stem cells was proven to induce neural regeneration in animal models of complete SCI.Based on these preclinical studies,collagen scaffolds loaded with the patients’own bone marrow mononuclear cells or human umbilical cord mesenchymal stem cells were transplanted into SCI patients.Fifteen patients with acute complete SCI and 51 patients with chronic complete SCI were enrolled and followed up for 2 to 5 years.No serious adverse events related to functional scaffold transplantation were observed.Among the patients with acute SCI,five patients achieved expansion of their sensory positions and six patients recovered sensation in the bowel or bladder.Additionally,four patients regained voluntary walking ability accompanied by reconnection of neural signal transduction.Among patients with chronic SCI,16 patients achieved expansion of their sensation level and 30 patients experienced enhanced reflexive defecation sensation or increased skin sweating below the injury site.Nearly half of the patients with chronic cervical SCI developed enhanced finger activity.These long-term follow-up results suggest that functional scaffold transplantation may represent a feasible treatment for patients with complete SCI. 展开更多
关键词 complete spinal cord injury collagen scaffold function recovery clinical study
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部