The lower reaches of the Jinsha River are rich in hydropower resources because of the high mountains,deep valleys,and swift currents in this area.This region also features complex tectonic structures and frequent eart...The lower reaches of the Jinsha River are rich in hydropower resources because of the high mountains,deep valleys,and swift currents in this area.This region also features complex tectonic structures and frequent earthquakes.After the impoundment of the reservoirs,seismic activity increased significantly.Therefore,it is necessary to study the P-wave velocity structure and earthquake locations in the lower reaches of the Jinsha River and surrounds,thus providing seismological support for subsequent earthquake prevention and disaster reduction work in reservoir areas.In this study,we selected the data of 7.670 seismic events recorded by the seismic networks in Sichuan.Yunnan,and Chongqing and the temporary seismic arrays deployed nearby.We then applied the double-difference tomography method to this data,to obtain the P-wave velocity structure and earthquake locations in the lower reaches of the Jinsha River and surrounds.The results showed that the Jinsha River basin has a complex lateral P-wave velocity structure.Seismic events are mainly distributed in the transition zones between high-and low-velocity anomalies,and seismic events are particularly intense in the Xiluodu and Baihetan reservoir areas.Vertical cross-sections through the Xiangjiaba and Xiluodu reservoir areas revealed an apparent high-velocity anomaly at approximately 6 km depth:this high-velocity anomaly plays a role in stress accumulation,with few earthquakes distributed inside the high-velocity body.After the impoundment of the Baihetan reservoir,the number of earthquakes in the reservoir area increased significantly.The seismic events in the reservoir area north of 27°N were related to the enhanced activity of nearby faults after impoundment:the earthquakes in the reservoir area south of 27°N were probably induced by additional loads(or regional stress changes),and the multiple microseismic events may have been caused by rock rupture near the main faults under high pore pressure.展开更多
The China Seismic Experimental Site(CSES)is located at the intersection of the Tibetan Plateau,South China Block,and Indian Plate and has complex geological settings and intense crustal deformation,making it one of th...The China Seismic Experimental Site(CSES)is located at the intersection of the Tibetan Plateau,South China Block,and Indian Plate and has complex geological settings and intense crustal deformation,making it one of the most seismically active areas in Chinese mainland.A high-resolution,three-dimensional(3D)crust-mantle velocity structure is crucial for understanding seismotectonic environments,lithospheric deformation mechanisms,and deep dynamic processes.We first constructed a high-vertical-resolution 3D initial velocity model using the joint inversion of receiver functions and surface waves and then obtained a 3D P-and S-wave velocity model(CSES-VM1.0)with the highest lateral resolution of 0.25°for the CSES using double-difference tomography.Owing to the limitations of the Sn observation data,the resolution of the S-wave velocity model in the lower crust and upper mantle was reduced,making it closer to the initial model provided by joint inversion.A comparison with explosive-source seismic data showed that the synthetic P-wave first-arrival travel times of the new model were closer to the observations than those of the previous velocity models.The velocity cross-sections across the source areas of the 2022 Lushan MS6.1 and Ludian MS6.8 earthquakes reveal that the former earthquake occurred near a weak contact zone between the Tibetan Plateau and Sichuan Basin,and the rupture of the latter earthquake occurred in a granitic area,with the northern end blocked by rigid high-velocity bodies.A clear high-velocity anomaly zone is distributed along the western margin of the Yangtze Block,revealing the spatial distribution of Neoproterozoic intermediate-basic intrusions.This high-velocity zone significantly controls the morphology of fault zones and influences the rupture processes of major earthquakes.Two northeast-southwest and north-south trending high-velocity anomalies were found near Panzhihua,potentially related to Neoproterozoic and Middle-Late Permian intermediate-basic intrusions.The imaging results revealed the spatial distribution of the Lincang granitoid batholith,the uplifted zone of the central axis fault in the Simao Basin,and the Ailaoshan complex belt in the southwestern CSES,demonstrating a higher spatial resolution compared to previous results.Our velocity model provides an essential foundation for deep structural studies,high-precision earthquake locations,and strong ground motion simulations in the CSES.展开更多
基金This work is supported by the National Key Research and Development Program of China(Nos.2021YFC3000602 and 2017YFC0404901)Joint Funds of the National Natural Science Foundation of China(No.U2139205)the Research Project Fund of the Institute of Geophysics,China Earthquake Administration(No.DQJB21Z18)。
文摘The lower reaches of the Jinsha River are rich in hydropower resources because of the high mountains,deep valleys,and swift currents in this area.This region also features complex tectonic structures and frequent earthquakes.After the impoundment of the reservoirs,seismic activity increased significantly.Therefore,it is necessary to study the P-wave velocity structure and earthquake locations in the lower reaches of the Jinsha River and surrounds,thus providing seismological support for subsequent earthquake prevention and disaster reduction work in reservoir areas.In this study,we selected the data of 7.670 seismic events recorded by the seismic networks in Sichuan.Yunnan,and Chongqing and the temporary seismic arrays deployed nearby.We then applied the double-difference tomography method to this data,to obtain the P-wave velocity structure and earthquake locations in the lower reaches of the Jinsha River and surrounds.The results showed that the Jinsha River basin has a complex lateral P-wave velocity structure.Seismic events are mainly distributed in the transition zones between high-and low-velocity anomalies,and seismic events are particularly intense in the Xiluodu and Baihetan reservoir areas.Vertical cross-sections through the Xiangjiaba and Xiluodu reservoir areas revealed an apparent high-velocity anomaly at approximately 6 km depth:this high-velocity anomaly plays a role in stress accumulation,with few earthquakes distributed inside the high-velocity body.After the impoundment of the Baihetan reservoir,the number of earthquakes in the reservoir area increased significantly.The seismic events in the reservoir area north of 27°N were related to the enhanced activity of nearby faults after impoundment:the earthquakes in the reservoir area south of 27°N were probably induced by additional loads(or regional stress changes),and the multiple microseismic events may have been caused by rock rupture near the main faults under high pore pressure.
基金supported by the National Key R&D Program of China(Grant No.2022YFF0800601)the National Natural Science Foundation of China(Grant No.U2039204)the Special Funds for Basic Scientific Research Business Fees of Institute of Geophysics,China Earthquake Administration(Grant No.DQJB21Z03)。
文摘The China Seismic Experimental Site(CSES)is located at the intersection of the Tibetan Plateau,South China Block,and Indian Plate and has complex geological settings and intense crustal deformation,making it one of the most seismically active areas in Chinese mainland.A high-resolution,three-dimensional(3D)crust-mantle velocity structure is crucial for understanding seismotectonic environments,lithospheric deformation mechanisms,and deep dynamic processes.We first constructed a high-vertical-resolution 3D initial velocity model using the joint inversion of receiver functions and surface waves and then obtained a 3D P-and S-wave velocity model(CSES-VM1.0)with the highest lateral resolution of 0.25°for the CSES using double-difference tomography.Owing to the limitations of the Sn observation data,the resolution of the S-wave velocity model in the lower crust and upper mantle was reduced,making it closer to the initial model provided by joint inversion.A comparison with explosive-source seismic data showed that the synthetic P-wave first-arrival travel times of the new model were closer to the observations than those of the previous velocity models.The velocity cross-sections across the source areas of the 2022 Lushan MS6.1 and Ludian MS6.8 earthquakes reveal that the former earthquake occurred near a weak contact zone between the Tibetan Plateau and Sichuan Basin,and the rupture of the latter earthquake occurred in a granitic area,with the northern end blocked by rigid high-velocity bodies.A clear high-velocity anomaly zone is distributed along the western margin of the Yangtze Block,revealing the spatial distribution of Neoproterozoic intermediate-basic intrusions.This high-velocity zone significantly controls the morphology of fault zones and influences the rupture processes of major earthquakes.Two northeast-southwest and north-south trending high-velocity anomalies were found near Panzhihua,potentially related to Neoproterozoic and Middle-Late Permian intermediate-basic intrusions.The imaging results revealed the spatial distribution of the Lincang granitoid batholith,the uplifted zone of the central axis fault in the Simao Basin,and the Ailaoshan complex belt in the southwestern CSES,demonstrating a higher spatial resolution compared to previous results.Our velocity model provides an essential foundation for deep structural studies,high-precision earthquake locations,and strong ground motion simulations in the CSES.