A highly sensitive light-induced thermoelectric spectroscopy(LITES)sensor based on a multi-pass cell(MPC)with dense spot pattern and a novel quartz tuning fork(QTF)with low resonance frequency is reported in this manu...A highly sensitive light-induced thermoelectric spectroscopy(LITES)sensor based on a multi-pass cell(MPC)with dense spot pattern and a novel quartz tuning fork(QTF)with low resonance frequency is reported in this manuscript.An erbi-um-doped fiber amplifier(EDFA)was employed to amplify the output optical power so that the signal level was further enhanced.The optical path length(OPL)and the ratio of optical path length to volume(RLV)of the MPC is 37.7 m and 13.8 cm^(-2),respectively.A commercial QTF and a self-designed trapezoidal-tip QTF with low frequency of 9461.83 Hz were used as the detectors of the sensor,respectively.The target gas selected to test the performance of the system was acetylene(C2H2).When the optical power was constant at 1000 mW,the minimum detection limit(MDL)of the C2H2-LITES sensor can be achieved 48.3 ppb when using the commercial QTF and 24.6 ppb when using the trapezoid-al-tip QTF.An improvement of the detection performance by a factor of 1.96 was achieved after replacing the commer-cial QTF with the trapezoidal-tip QTF.展开更多
Petroleum hydrocarbon pollution is a global concern,particularly in coastal environments.Polycyclic aromatic hydrocarbons(PAHs) are regarded as the most toxic components of petroleum hydrocarbons.In this study,the bio...Petroleum hydrocarbon pollution is a global concern,particularly in coastal environments.Polycyclic aromatic hydrocarbons(PAHs) are regarded as the most toxic components of petroleum hydrocarbons.In this study,the biomonitoring and ranking effects of petroleum hydrocarbons and PAHs on the marine fish model Oryzias melastigma embryos were determined in the Jiulong River Estuary(JRE) and its adjacent waters in China.The results showed that the levels of petroleum hydrocarbons from almost all sites met the primary standard for marine seawater quality,and the concentrations of the 16 priority PAHs in the surface seawater were lower compared with those in other coastal areas worldwide.A new fish expert system based on the embryotoxicity of O.melastigma(OME-FES) was developed and applied in the field to evaluate the biological effects of petroleum hydrocarbons and PAHs.The selected physiological index and molecular indicators in OME-FES were appropriate biomarkers for indicating the harmful effects of petroleum hydrocarbons and PAHs.The outcome of OME-FES revealed that the biological effect levels of the sampling sites ranged from level Ⅰ(no stress) to level Ⅲ(medium stress),which is further corroborated by the findings of nested analysis of variance(ANOVA) models.Our results suggest that the OME-FES is an effective tool for evaluating and ranking the biological effects of marine petroleum hydrocarbons and PAHs.This method may also be applied to evaluate other marine pollutants based on its framework.展开更多
Soybean(Glycine max)is a short-day crop whose flowering time is regulated by photoperiod.The longjuvenile trait extends its vegetative phase and increases yield under short-day conditions.Natural variation in J,the ma...Soybean(Glycine max)is a short-day crop whose flowering time is regulated by photoperiod.The longjuvenile trait extends its vegetative phase and increases yield under short-day conditions.Natural variation in J,the major locus controlling this trait,modulates flowering time.We report that the three J-family genes influence soybean flowering time,with the triple mutant Guangzhou Mammoth-2 flowering late under short days by inhibiting transcription of E1-family genes.J-family genes offer promising allelic combinations for breeding.展开更多
The presence of interstitial electrons in electrides endows them with interesting attributes,such as low work function,high carrier concentration,and unique magnetic properties.Thorough knowledge and understanding of ...The presence of interstitial electrons in electrides endows them with interesting attributes,such as low work function,high carrier concentration,and unique magnetic properties.Thorough knowledge and understanding of electrides are thus of both scientific and technological significance.Here,we employ first-principles calculations to investigate Mott-insulating Ae_(5)X_(3)(Ae=Ca,Sr,and Ba;X=As and Sb)electrides with Mn_(5)Si_(3)-type structure,in which half-filled interstitial electrons serve as ions and are spin-polarized.The Mott-insulating property is induced by strong electron correlation between the nearest interstitial electrons,resulting in spin splitting and a separation between occupied and unoccupied states.The half-filled antiferromagnetic configuration and localization of the interstitial electrons are critical for the Mott-insulating properties of these materials.Compared with that in intermetallic electrides,the orbital hybridization between the half-filled interstitial electrons and the surrounding atoms is weak,leading to highly localized magnetic centers and pronounced correlation effects.Therefore,the Mott-insulating electrides Ae_(5)X_(3)have very large indirect bandgaps(0.30 eV).In addition,high pressure is found to strengthen the strong correlation effects and enlarge the bandgap.The present results provide a deeper understanding of the formation mechanism of Mott-insulating electrides and provide guidance for the search for new strongly correlated electrides.展开更多
Flowering time is a key agronomic trait that directly affect the adaptation and yield of soybean.After whole genome duplications,about 75%of genes being represented by multiple copies in soybean.There are four TERMINA...Flowering time is a key agronomic trait that directly affect the adaptation and yield of soybean.After whole genome duplications,about 75%of genes being represented by multiple copies in soybean.There are four TERMINAL FLOWER 1(TFL1)genes in soybean,and the TFL1b(Dt1)has been characterized as the determinant of stem growth habit.The function of other TFL1 homologs in soybean is still unclear.Here,we generated knockout mutants by CRISPR/Cas9 genome editing technology and found that the tfl1c/tfl1d double mutants flowered significantly earlier than wild-type plants.We investigated that TFL1c and TFL1d could physically interact with the b ZIP transcription factor FDc1 and bind to the promoter of APETALA1a(AP1a).RNA-seq and q RT-PCR analyses indicated that TFL1c and TFL1d repressed the expressions of the four AP1 homologs and delayed the flowering time in soybean.The two genes play important roles in the regulation of flowering time in soybean and mainly act as the flowering inhibitors under long-day conditions.Our results identify novel components in the flowering-time regulation network of soybean and will be invaluable for molecular breeding of improved soybean yield.展开更多
Spinal cord injury often leads to severe motor and sensory deficits,and prognosis using the currently available therapies remains poor.Therefore,we aimed to explore a novel therapeutic approach for improving the progn...Spinal cord injury often leads to severe motor and sensory deficits,and prognosis using the currently available therapies remains poor.Therefore,we aimed to explore a novel therapeutic approach for improving the prognosis of spinal cord injury.In this study,we implanted oscillating field stimulation devices and transplanted neural stem cells into the thoracic region(T9–T10)of rats with a spinal cord contusion.Basso-Beattie-Bresnahan scoring revealed that oscillating field stimulation combined with neural stem cells transplantation promoted motor function recovery following spinal cord injury.In addition,we investigated the regulation of oscillating field stimulation on the miR-124/Tal1 axis in neural stem cells.Transfection of lentivirus was performed to investigate the role of Tal1 in neurogenesis of neural stem cells induced by oscillating field stimulation.Quantitative reverse transcription-polymerase chain reaction,immunofluorescence and western blotting showed that oscillating field stimulation promoted neurogenesis of neural stem cells in vitro and in vivo.Hematoxylin and eosin staining showed that oscillating field stimulation combined with neural stem cells transplantation alleviated cavities formation after spinal cord injury.Taking the results together,we concluded that oscillating field stimulation decreased miR-124 expression and increased Tal1 content,thereby promoting the neurogenesis of neural stem cells.The combination of oscillating field stimulation and neural stem cells transplantation improved neurogenesis,and thereby promoted structural and functional recovery after spinal cord injury.展开更多
As the first safety barrier of nuclear reactors,zirconium alloy cladding tubes have attracted extensive attention because of its good mechanical properties.The strength and ductility of zirconium alloy are of great si...As the first safety barrier of nuclear reactors,zirconium alloy cladding tubes have attracted extensive attention because of its good mechanical properties.The strength and ductility of zirconium alloy are of great significance to the service process of cladding tubes,while brittle hydrides precipitate and thus deteriorate the overall performance.Based on the cohesive finite element method,the effects of cohesive strength,interfacial characteristics,and hydrides geometric characteristics on the strength and ductility of two-phase material(zirconium alloy with hydrides)are numerically simulated.The results show that the fracture behavior is significantly affected by the cohesive strength and that the overall strength and ductility are sensitive to the cohesive strength of the zirconium alloy.Furthermore,the interface is revealed to have prominent effects on the overall fracture behavior.When the cohesive strength and fracture energy of the interface are higher than those of the hydride phase,fracture initiates in the hydrides,which is consistent with the experimental phenomena.In addition,it is found that the number density and arrangement of hydrides play important roles in the overall strength and ductility.Our simulation provides theoretical support for the performance analysis of hydrogenated zirconium alloys during nuclear reactor operation.展开更多
The three-node feedforward motif has been revealed to function as a weak signal amplifier. In this motif, two nodes(input nodes) receive a weak input signal and send it unidirectionally to the third node(output node)....The three-node feedforward motif has been revealed to function as a weak signal amplifier. In this motif, two nodes(input nodes) receive a weak input signal and send it unidirectionally to the third node(output node). Here, we change the motif's unidirectional couplings(feedforward) to bidirectional couplings(feedforward and feedback working together).We find that a small asymmetric coupling, in which the feedforward effect is stronger than the feedback effect, may enable the three-node motif to go through two distinct dynamic transitions, giving rise to a double resonant signal response. We present an analytical description of the double resonance, which agrees with the numerical findings.展开更多
Novel coronavirus(SARS-CoV-2,hereby known as COVID-19)has the characteristics of rapid variation and multiple variants,which has caused a huge impact on human health worldwide.At the end of 2022,the Omicron variant wa...Novel coronavirus(SARS-CoV-2,hereby known as COVID-19)has the characteristics of rapid variation and multiple variants,which has caused a huge impact on human health worldwide.At the end of 2022,the Omicron variant was widely spread in China,and the patients infected with COVID-19 were mainly concentrated in the elderly over 80 years old and people with serious basic diseases.Pathologically,diffuse lung injury can be seen in the advanced stage of severe and critical diseases,with a large number of inflammatory cells and fibrous mucus exudation,alveolar epithelial cells shedding and necrosis,severe pulmonary edema,hyaline membrane formation,and diffuse ground-glass shadow or consolidation on imaging,which is manifested as“white lung”[1],and its mortality rate has significantly increased.This study reported two cases of elderly patients admitted to the Affiliated Hospital of Hebei University for the treatment of COVID-19.展开更多
The load</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span><...The load</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">response correlation is a great concern for the management and maintenance agency of bridges. Based on both the load test data and the long-term structural health monitoring data, this study aims to characterize the variation in the girder-end longitudinal displacement of a long-span suspension bridge, </span><i><span style="font-family:Verdana;">i.e.</span></i><span style="font-family:Verdana;">, the Zhaoyun Bridge in Guangdong Province of China. The load test provides a valuable chance to investigate the structural deformation in high loading levels, while the structural health monitoring system records the real-time, in-site, and long-term measurements in the normal operational stage of bridges. During the load test, the movement direction of the main girder is found to depend on the relative position of the center of gravity of the girder and the loading vehicles. However, over the period of normal operation, the quasi-static displacement at the ends of the main girder along the bridge axis is dominated by the temperature variations, rather than the traffic loading. The temperature-induced deformation is considerable so it should be filtered out from the structural total responses to highlight the live load effects or the anomalies of the bridge. As a case study, the temperature-displacement baseline model of the Zhaoyun Bridge is established and then utilized to identify the erroneous measurements in the structural health monitoring system. This paper serves as a reference for the structural behavior interpretation and performance evaluation of similar bridges.展开更多
QT interval prolongation can be categorized into primary and secondary types according to its etiology.In this paper,we report a case of severe asymptomatic QT interval prolongation secondary to antidepressants.Regula...QT interval prolongation can be categorized into primary and secondary types according to its etiology.In this paper,we report a case of severe asymptomatic QT interval prolongation secondary to antidepressants.Regular follow-up and electrocardiogram monitoring is crucial when applying antidepressants,especially for patients without cardiac symptoms.This article presents case studies and examines existing literature on long QT syndrome to enhance the diagnosis and management of QT interval prolongation.This is especially relevant for non-psychiatric healthcare professionals who need to be attentive to the side effects of antidepressants to prevent potential adverse consequences resulting from oversight.展开更多
Chrome-molybdenum steel(2·1/4Cr1Mo) is one of the main products of steam generation.The adsorption behaviors of radioactive fission products on2·1/4Cr1Mo surface are critical in the analysis of HTR-PM.Here,t...Chrome-molybdenum steel(2·1/4Cr1Mo) is one of the main products of steam generation.The adsorption behaviors of radioactive fission products on2·1/4Cr1Mo surface are critical in the analysis of HTR-PM.Here,the adsorption behavior of cesium,strontium,silver and iodine on 2·1/4Cr1Mo was investigated with first-principle calculations that the Ag and I atoms prefer to be adsorbed at the square hollow site of the face-centered cubic iron cell with a binding energy of about 1 and 3 eV,respectively.In contrast,Cs and Sr atoms are not adsorbed on the surface of the 2·1/4Cr1Mo.These results are again confirmed via analysis of charge density differences and the densities of state.Furthermore,the adsorption rates of these fission products show that only I and Ag have significant adsorption on the metal substrate.These adsorption results explain the amount of adsorbed radionuclides for an evaluation of nuclear safety in HTR-PM.These micro-pictures of the interaction between fission products and materials are a new and useful way to analyze the source term.展开更多
Flowering time is an important agronomic trait for soybean yield and adaptation. However, the genetic basis of soybean adaptation to diverse latitudes is still not clear. Four NIGHT LIGHT-INDUCIBLE AND CLOCK-REGULATED...Flowering time is an important agronomic trait for soybean yield and adaptation. However, the genetic basis of soybean adaptation to diverse latitudes is still not clear. Four NIGHT LIGHT-INDUCIBLE AND CLOCK-REGULATED 2(LNK2) homeologs of Arabidopsis thaliana LNK2 were identified in soybean. Three single-guide RNAs were designed for editing the four LNK2 genes. A transgene-free homozygous quadruple mutant of the LNK2 genes was developed using the CRISPR(clustered regularly interspaced short palindromic repeats)/Cas9(CRISPR-associated protein 9). Under long-day(LD) conditions, the quadruple mutant flowered significantly earlier than the wild-type(WT). Quantitative real-time PCR(q RT-PCR)revealed that transcript levels of LNK2 were significantly lower in the quadruple mutant than in the WT under LD conditions. LNK2 promoted the expression of the legume-specific E1 gene and repressed the expression of FT2 a. Genetic markers were developed to identify LNK2 mutants for soybean breeding.These results indicate that CRISPR/Cas9-mediated targeted mutagenesis of four LNK2 genes shortens flowering time in soybean. Our findings identify novel components in flowering-time control in soybean and may be beneficial for further soybean breeding in high-latitude environments.展开更多
The development of cloud computing and virtualization technology has brought great challenges to the reliability of data center services.Data centers typically contain a large number of compute and storage nodes which...The development of cloud computing and virtualization technology has brought great challenges to the reliability of data center services.Data centers typically contain a large number of compute and storage nodes which may fail and affect the quality of service.Failure prediction is an important means of ensuring service availability.Predicting node failure in cloud-based data centers is challenging because the failure symptoms reflected have complex characteristics,and the distribution imbalance between the failure sample and the normal sample is widespread,resulting in inaccurate failure prediction.Targeting these challenges,this paper proposes a novel failure prediction method FP-STE(Failure Prediction based on Spatio-temporal Feature Extraction).Firstly,an improved recurrent neural network HW-GRU(Improved GRU based on HighWay network)and a convolutional neural network CNN are used to extract the temporal features and spatial features of multivariate data respectively to increase the discrimination of different types of failure symptoms which improves the accuracy of prediction.Then the intermediate results of the two models are added as features into SCSXGBoost to predict the possibility and the precise type of node failure in the future.SCS-XGBoost is an ensemble learning model that is improved by the integrated strategy of oversampling and cost-sensitive learning.Experimental results based on real data sets confirm the effectiveness and superiority of FP-STE.展开更多
Soybean [Glycine max(L.) Merrill] is a major plant source of protein and oil. An accurate and well-saturated molecular linkage map is a prerequisite for forward genetic studies of gene function and for modern breeding...Soybean [Glycine max(L.) Merrill] is a major plant source of protein and oil. An accurate and well-saturated molecular linkage map is a prerequisite for forward genetic studies of gene function and for modern breeding for many useful agronomic traits. Next-generation sequence data available in public databases provides valuable information and offers new insights for rapid and efficient development of molecular markers. In this study, we attempted to show the feasibility and facility of using genomic resequencing data as raw material for identifying putative In Del markers. First, we identified 17,613 In Del sites among 56 soybean accessions and obtained 12,619 primer pairs. Second, we constructed a genetic map with a random subset of 2841 primer pairs and aligned 300 polymorphic markers with the 20 consensus linkage groups(LG). The total genetic distance was 2347.3 c M and the number of mapped markers per LG ranged from 10 to 23 with an average of 15 markers. The largest and smallest genetic distances between adjacent markers were 52.3 c M and 0.1 cM, respectively. Finally, we validated the genetic map constructed by newly developed In Del markers by QTL analysis of days to flowering(DTF) under different environments. One major QTL(qDTF4) and four minor QTL(qDTF20, qDTF13, qDTF12,and q DTF11) on 5 LGs were detected. These results demonstrate the utility of the In Del markers developed in this work for map-based cloning and molecular breeding in soybean.展开更多
基金National Natural Science Foundation of China(Grant Nos.62335006,62022032,62275065,and 61875047)Key Laboratory of Opto-Electronic Information Acquisition and Manipulation(Anhui University),Ministry of Education(Grant No.OEIAM202202)Fundamental Research Funds for the Central Universities(Grant No.HIT.OCEF.2023011).
文摘A highly sensitive light-induced thermoelectric spectroscopy(LITES)sensor based on a multi-pass cell(MPC)with dense spot pattern and a novel quartz tuning fork(QTF)with low resonance frequency is reported in this manuscript.An erbi-um-doped fiber amplifier(EDFA)was employed to amplify the output optical power so that the signal level was further enhanced.The optical path length(OPL)and the ratio of optical path length to volume(RLV)of the MPC is 37.7 m and 13.8 cm^(-2),respectively.A commercial QTF and a self-designed trapezoidal-tip QTF with low frequency of 9461.83 Hz were used as the detectors of the sensor,respectively.The target gas selected to test the performance of the system was acetylene(C2H2).When the optical power was constant at 1000 mW,the minimum detection limit(MDL)of the C2H2-LITES sensor can be achieved 48.3 ppb when using the commercial QTF and 24.6 ppb when using the trapezoid-al-tip QTF.An improvement of the detection performance by a factor of 1.96 was achieved after replacing the commer-cial QTF with the trapezoidal-tip QTF.
基金The Scientific Research Foundation of the Third Institute of Oceanography,Ministry of Natural Resources under contract Nos 2020014 and 2020017the National Natural Science Foundation of China under contract No.41977211the National Program on Global Change and Air-Sea Interaction under contract No.GASI-02-SCS-YDsum。
文摘Petroleum hydrocarbon pollution is a global concern,particularly in coastal environments.Polycyclic aromatic hydrocarbons(PAHs) are regarded as the most toxic components of petroleum hydrocarbons.In this study,the biomonitoring and ranking effects of petroleum hydrocarbons and PAHs on the marine fish model Oryzias melastigma embryos were determined in the Jiulong River Estuary(JRE) and its adjacent waters in China.The results showed that the levels of petroleum hydrocarbons from almost all sites met the primary standard for marine seawater quality,and the concentrations of the 16 priority PAHs in the surface seawater were lower compared with those in other coastal areas worldwide.A new fish expert system based on the embryotoxicity of O.melastigma(OME-FES) was developed and applied in the field to evaluate the biological effects of petroleum hydrocarbons and PAHs.The selected physiological index and molecular indicators in OME-FES were appropriate biomarkers for indicating the harmful effects of petroleum hydrocarbons and PAHs.The outcome of OME-FES revealed that the biological effect levels of the sampling sites ranged from level Ⅰ(no stress) to level Ⅲ(medium stress),which is further corroborated by the findings of nested analysis of variance(ANOVA) models.Our results suggest that the OME-FES is an effective tool for evaluating and ranking the biological effects of marine petroleum hydrocarbons and PAHs.This method may also be applied to evaluate other marine pollutants based on its framework.
基金supported by the National Key Research and Development Program of China(2023YFD1200600 to Xiaoya Lin)National Natural Science Foundation of China(32090060 to Fanjiang Kong,32001568 to Xiaoya Lin,31930083 to Baohui Liu,and 31901500 to Tiantian Bu)China Postdoctoral Science Foundation(2019 M652839 to Liyu Chen)。
文摘Soybean(Glycine max)is a short-day crop whose flowering time is regulated by photoperiod.The longjuvenile trait extends its vegetative phase and increases yield under short-day conditions.Natural variation in J,the major locus controlling this trait,modulates flowering time.We report that the three J-family genes influence soybean flowering time,with the triple mutant Guangzhou Mammoth-2 flowering late under short days by inhibiting transcription of E1-family genes.J-family genes offer promising allelic combinations for breeding.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.12204419 and 12074013)。
文摘The presence of interstitial electrons in electrides endows them with interesting attributes,such as low work function,high carrier concentration,and unique magnetic properties.Thorough knowledge and understanding of electrides are thus of both scientific and technological significance.Here,we employ first-principles calculations to investigate Mott-insulating Ae_(5)X_(3)(Ae=Ca,Sr,and Ba;X=As and Sb)electrides with Mn_(5)Si_(3)-type structure,in which half-filled interstitial electrons serve as ions and are spin-polarized.The Mott-insulating property is induced by strong electron correlation between the nearest interstitial electrons,resulting in spin splitting and a separation between occupied and unoccupied states.The half-filled antiferromagnetic configuration and localization of the interstitial electrons are critical for the Mott-insulating properties of these materials.Compared with that in intermetallic electrides,the orbital hybridization between the half-filled interstitial electrons and the surrounding atoms is weak,leading to highly localized magnetic centers and pronounced correlation effects.Therefore,the Mott-insulating electrides Ae_(5)X_(3)have very large indirect bandgaps(0.30 eV).In addition,high pressure is found to strengthen the strong correlation effects and enlarge the bandgap.The present results provide a deeper understanding of the formation mechanism of Mott-insulating electrides and provide guidance for the search for new strongly correlated electrides.
基金supported by the National Natural Science Foundation of China(32022062,32001503)the Science and Technology Innovation Team of Soybean Modern Seed Industry in Hebei(21326313D)。
文摘Flowering time is a key agronomic trait that directly affect the adaptation and yield of soybean.After whole genome duplications,about 75%of genes being represented by multiple copies in soybean.There are four TERMINAL FLOWER 1(TFL1)genes in soybean,and the TFL1b(Dt1)has been characterized as the determinant of stem growth habit.The function of other TFL1 homologs in soybean is still unclear.Here,we generated knockout mutants by CRISPR/Cas9 genome editing technology and found that the tfl1c/tfl1d double mutants flowered significantly earlier than wild-type plants.We investigated that TFL1c and TFL1d could physically interact with the b ZIP transcription factor FDc1 and bind to the promoter of APETALA1a(AP1a).RNA-seq and q RT-PCR analyses indicated that TFL1c and TFL1d repressed the expressions of the four AP1 homologs and delayed the flowering time in soybean.The two genes play important roles in the regulation of flowering time in soybean and mainly act as the flowering inhibitors under long-day conditions.Our results identify novel components in the flowering-time regulation network of soybean and will be invaluable for molecular breeding of improved soybean yield.
基金supported by the National Natural Science Foundation of China,Nos.81471273(to JQ),and 81472088(to CLS)the Natural Science Research Projects in Colleges and Universities of Anhui Province,No.KJ2020ZD23(to JQ)the Natural Science Foundation of Anhui Province,No.2208085MH210(to JQ)。
文摘Spinal cord injury often leads to severe motor and sensory deficits,and prognosis using the currently available therapies remains poor.Therefore,we aimed to explore a novel therapeutic approach for improving the prognosis of spinal cord injury.In this study,we implanted oscillating field stimulation devices and transplanted neural stem cells into the thoracic region(T9–T10)of rats with a spinal cord contusion.Basso-Beattie-Bresnahan scoring revealed that oscillating field stimulation combined with neural stem cells transplantation promoted motor function recovery following spinal cord injury.In addition,we investigated the regulation of oscillating field stimulation on the miR-124/Tal1 axis in neural stem cells.Transfection of lentivirus was performed to investigate the role of Tal1 in neurogenesis of neural stem cells induced by oscillating field stimulation.Quantitative reverse transcription-polymerase chain reaction,immunofluorescence and western blotting showed that oscillating field stimulation promoted neurogenesis of neural stem cells in vitro and in vivo.Hematoxylin and eosin staining showed that oscillating field stimulation combined with neural stem cells transplantation alleviated cavities formation after spinal cord injury.Taking the results together,we concluded that oscillating field stimulation decreased miR-124 expression and increased Tal1 content,thereby promoting the neurogenesis of neural stem cells.The combination of oscillating field stimulation and neural stem cells transplantation improved neurogenesis,and thereby promoted structural and functional recovery after spinal cord injury.
基金Supported by National Key Research and Development Plan of China(Grant No.2018YFC0808800)National Natural Science Foundation of China(Grant No.51875398)China Postdoctoral Science Foundation(Grant No.2021M693240).
文摘As the first safety barrier of nuclear reactors,zirconium alloy cladding tubes have attracted extensive attention because of its good mechanical properties.The strength and ductility of zirconium alloy are of great significance to the service process of cladding tubes,while brittle hydrides precipitate and thus deteriorate the overall performance.Based on the cohesive finite element method,the effects of cohesive strength,interfacial characteristics,and hydrides geometric characteristics on the strength and ductility of two-phase material(zirconium alloy with hydrides)are numerically simulated.The results show that the fracture behavior is significantly affected by the cohesive strength and that the overall strength and ductility are sensitive to the cohesive strength of the zirconium alloy.Furthermore,the interface is revealed to have prominent effects on the overall fracture behavior.When the cohesive strength and fracture energy of the interface are higher than those of the hydride phase,fracture initiates in the hydrides,which is consistent with the experimental phenomena.In addition,it is found that the number density and arrangement of hydrides play important roles in the overall strength and ductility.Our simulation provides theoretical support for the performance analysis of hydrogenated zirconium alloys during nuclear reactor operation.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12175087 and 12105117)。
文摘The three-node feedforward motif has been revealed to function as a weak signal amplifier. In this motif, two nodes(input nodes) receive a weak input signal and send it unidirectionally to the third node(output node). Here, we change the motif's unidirectional couplings(feedforward) to bidirectional couplings(feedforward and feedback working together).We find that a small asymmetric coupling, in which the feedforward effect is stronger than the feedback effect, may enable the three-node motif to go through two distinct dynamic transitions, giving rise to a double resonant signal response. We present an analytical description of the double resonance, which agrees with the numerical findings.
基金The Hebei Provincial Department of Finance’s Geriatric Disease Prevention and Control Project(361007)the Hebei Provincial Postgraduate Innovation Funded Project(HBU2023SS004)。
文摘Novel coronavirus(SARS-CoV-2,hereby known as COVID-19)has the characteristics of rapid variation and multiple variants,which has caused a huge impact on human health worldwide.At the end of 2022,the Omicron variant was widely spread in China,and the patients infected with COVID-19 were mainly concentrated in the elderly over 80 years old and people with serious basic diseases.Pathologically,diffuse lung injury can be seen in the advanced stage of severe and critical diseases,with a large number of inflammatory cells and fibrous mucus exudation,alveolar epithelial cells shedding and necrosis,severe pulmonary edema,hyaline membrane formation,and diffuse ground-glass shadow or consolidation on imaging,which is manifested as“white lung”[1],and its mortality rate has significantly increased.This study reported two cases of elderly patients admitted to the Affiliated Hospital of Hebei University for the treatment of COVID-19.
文摘The load</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">response correlation is a great concern for the management and maintenance agency of bridges. Based on both the load test data and the long-term structural health monitoring data, this study aims to characterize the variation in the girder-end longitudinal displacement of a long-span suspension bridge, </span><i><span style="font-family:Verdana;">i.e.</span></i><span style="font-family:Verdana;">, the Zhaoyun Bridge in Guangdong Province of China. The load test provides a valuable chance to investigate the structural deformation in high loading levels, while the structural health monitoring system records the real-time, in-site, and long-term measurements in the normal operational stage of bridges. During the load test, the movement direction of the main girder is found to depend on the relative position of the center of gravity of the girder and the loading vehicles. However, over the period of normal operation, the quasi-static displacement at the ends of the main girder along the bridge axis is dominated by the temperature variations, rather than the traffic loading. The temperature-induced deformation is considerable so it should be filtered out from the structural total responses to highlight the live load effects or the anomalies of the bridge. As a case study, the temperature-displacement baseline model of the Zhaoyun Bridge is established and then utilized to identify the erroneous measurements in the structural health monitoring system. This paper serves as a reference for the structural behavior interpretation and performance evaluation of similar bridges.
基金funded by the Hebei Province Graduate Innovation Funding Project(HBU2023SS004)Baoding Science and Technology Planning Project(2341ZF145).
文摘QT interval prolongation can be categorized into primary and secondary types according to its etiology.In this paper,we report a case of severe asymptomatic QT interval prolongation secondary to antidepressants.Regular follow-up and electrocardiogram monitoring is crucial when applying antidepressants,especially for patients without cardiac symptoms.This article presents case studies and examines existing literature on long QT syndrome to enhance the diagnosis and management of QT interval prolongation.This is especially relevant for non-psychiatric healthcare professionals who need to be attentive to the side effects of antidepressants to prevent potential adverse consequences resulting from oversight.
基金supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China(No.ZX06901)
文摘Chrome-molybdenum steel(2·1/4Cr1Mo) is one of the main products of steam generation.The adsorption behaviors of radioactive fission products on2·1/4Cr1Mo surface are critical in the analysis of HTR-PM.Here,the adsorption behavior of cesium,strontium,silver and iodine on 2·1/4Cr1Mo was investigated with first-principle calculations that the Ag and I atoms prefer to be adsorbed at the square hollow site of the face-centered cubic iron cell with a binding energy of about 1 and 3 eV,respectively.In contrast,Cs and Sr atoms are not adsorbed on the surface of the 2·1/4Cr1Mo.These results are again confirmed via analysis of charge density differences and the densities of state.Furthermore,the adsorption rates of these fission products show that only I and Ag have significant adsorption on the metal substrate.These adsorption results explain the amount of adsorbed radionuclides for an evaluation of nuclear safety in HTR-PM.These micro-pictures of the interaction between fission products and materials are a new and useful way to analyze the source term.
基金supported by National Key Research and Development Program of China(2017YFD0101305)the National Natural Science Foundation of China(31930083,31901568,31801384,31725021,and 31771815)。
文摘Flowering time is an important agronomic trait for soybean yield and adaptation. However, the genetic basis of soybean adaptation to diverse latitudes is still not clear. Four NIGHT LIGHT-INDUCIBLE AND CLOCK-REGULATED 2(LNK2) homeologs of Arabidopsis thaliana LNK2 were identified in soybean. Three single-guide RNAs were designed for editing the four LNK2 genes. A transgene-free homozygous quadruple mutant of the LNK2 genes was developed using the CRISPR(clustered regularly interspaced short palindromic repeats)/Cas9(CRISPR-associated protein 9). Under long-day(LD) conditions, the quadruple mutant flowered significantly earlier than the wild-type(WT). Quantitative real-time PCR(q RT-PCR)revealed that transcript levels of LNK2 were significantly lower in the quadruple mutant than in the WT under LD conditions. LNK2 promoted the expression of the legume-specific E1 gene and repressed the expression of FT2 a. Genetic markers were developed to identify LNK2 mutants for soybean breeding.These results indicate that CRISPR/Cas9-mediated targeted mutagenesis of four LNK2 genes shortens flowering time in soybean. Our findings identify novel components in flowering-time control in soybean and may be beneficial for further soybean breeding in high-latitude environments.
基金supported in part by National Key Research and Development Program of China(2019YFB2103200)NSFC(61672108),Open Subject Funds of Science and Technology on Information Transmission and Dissemination in Communication Networks Laboratory(SKX182010049)+1 种基金the Fundamental Research Funds for the Central Universities(5004193192019PTB-019)the Industrial Internet Innovation and Development Project 2018 of China.
文摘The development of cloud computing and virtualization technology has brought great challenges to the reliability of data center services.Data centers typically contain a large number of compute and storage nodes which may fail and affect the quality of service.Failure prediction is an important means of ensuring service availability.Predicting node failure in cloud-based data centers is challenging because the failure symptoms reflected have complex characteristics,and the distribution imbalance between the failure sample and the normal sample is widespread,resulting in inaccurate failure prediction.Targeting these challenges,this paper proposes a novel failure prediction method FP-STE(Failure Prediction based on Spatio-temporal Feature Extraction).Firstly,an improved recurrent neural network HW-GRU(Improved GRU based on HighWay network)and a convolutional neural network CNN are used to extract the temporal features and spatial features of multivariate data respectively to increase the discrimination of different types of failure symptoms which improves the accuracy of prediction.Then the intermediate results of the two models are added as features into SCSXGBoost to predict the possibility and the precise type of node failure in the future.SCS-XGBoost is an ensemble learning model that is improved by the integrated strategy of oversampling and cost-sensitive learning.Experimental results based on real data sets confirm the effectiveness and superiority of FP-STE.
基金supported by National Natural Science Foundation of China (31430065, 31571686, 31371643, 31071445)National Key Research and Development Program (2016YFD0100401)+4 种基金“Strategic Priority Research Program” of the Chinese Academy of Sciences (XDA08030108)the Open Foundation of the Key Laboratory of Soybean Molecular Design Breeding of Chinese Academy of Sciences“One-hundred Talents” Startup Funds from Chinese Academy of SciencesScientific Research Foundation for Returned Chinese Scholars of Heilongjiang Province, China (LC201417)the Science Foundation for Creative Research Talents of Harbin Science and Technology Bureau, China (2014RFQYJ046)
文摘Soybean [Glycine max(L.) Merrill] is a major plant source of protein and oil. An accurate and well-saturated molecular linkage map is a prerequisite for forward genetic studies of gene function and for modern breeding for many useful agronomic traits. Next-generation sequence data available in public databases provides valuable information and offers new insights for rapid and efficient development of molecular markers. In this study, we attempted to show the feasibility and facility of using genomic resequencing data as raw material for identifying putative In Del markers. First, we identified 17,613 In Del sites among 56 soybean accessions and obtained 12,619 primer pairs. Second, we constructed a genetic map with a random subset of 2841 primer pairs and aligned 300 polymorphic markers with the 20 consensus linkage groups(LG). The total genetic distance was 2347.3 c M and the number of mapped markers per LG ranged from 10 to 23 with an average of 15 markers. The largest and smallest genetic distances between adjacent markers were 52.3 c M and 0.1 cM, respectively. Finally, we validated the genetic map constructed by newly developed In Del markers by QTL analysis of days to flowering(DTF) under different environments. One major QTL(qDTF4) and four minor QTL(qDTF20, qDTF13, qDTF12,and q DTF11) on 5 LGs were detected. These results demonstrate the utility of the In Del markers developed in this work for map-based cloning and molecular breeding in soybean.