Data-driven surrogate models that assist with efficient evolutionary algorithms to find the optimal development scheme have been widely used to solve reservoir production optimization problems.However,existing researc...Data-driven surrogate models that assist with efficient evolutionary algorithms to find the optimal development scheme have been widely used to solve reservoir production optimization problems.However,existing research suggests that the effectiveness of a surrogate model can vary depending on the complexity of the design problem.A surrogate model that has demonstrated success in one scenario may not perform as well in others.In the absence of prior knowledge,finding a promising surrogate model that performs well for an unknown reservoir is challenging.Moreover,the optimization process often relies on a single evolutionary algorithm,which can yield varying results across different cases.To address these limitations,this paper introduces a novel approach called the multi-surrogate framework with an adaptive selection mechanism(MSFASM)to tackle production optimization problems.MSFASM consists of two stages.In the first stage,a reduced-dimensional broad learning system(BLS)is used to adaptively select the evolutionary algorithm with the best performance during the current optimization period.In the second stage,the multi-objective algorithm,non-dominated sorting genetic algorithm II(NSGA-II),is used as an optimizer to find a set of Pareto solutions with good performance on multiple surrogate models.A novel optimal point criterion is utilized in this stage to select the Pareto solutions,thereby obtaining the desired development schemes without increasing the computational load of the numerical simulator.The two stages are combined using sequential transfer learning.From the two most important perspectives of an evolutionary algorithm and a surrogate model,the proposed method improves adaptability to optimization problems of various reservoir types.To verify the effectiveness of the proposed method,four 100-dimensional benchmark functions and two reservoir models are tested,and the results are compared with those obtained by six other surrogate-model-based methods.The results demonstrate that our approach can obtain the maximum net present value(NPV)of the target production optimization problems.展开更多
Enterprise risk management holds significant importance in fostering sustainable growth of businesses and in serving as a critical element for regulatory bodies to uphold market order.Amidst the challenges posed by in...Enterprise risk management holds significant importance in fostering sustainable growth of businesses and in serving as a critical element for regulatory bodies to uphold market order.Amidst the challenges posed by intricate and unpredictable risk factors,knowledge graph technology is effectively driving risk management,leveraging its ability to associate and infer knowledge from diverse sources.This review aims to comprehensively summarize the construction techniques of enterprise risk knowledge graphs and their prominent applications across various business scenarios.Firstly,employing bibliometric methods,the aim is to uncover the developmental trends and current research hotspots within the domain of enterprise risk knowledge graphs.In the succeeding section,systematically delineate the technical methods for knowledge extraction and fusion in the standardized construction process of enterprise risk knowledge graphs.Objectively comparing and summarizing the strengths and weaknesses of each method,we provide recommendations for addressing the existing challenges in the construction process.Subsequently,categorizing the applied research of enterprise risk knowledge graphs based on research hotspots and risk category standards,and furnishing a detailed exposition on the applicability of technical routes and methods.Finally,the future research directions that still need to be explored in enterprise risk knowledge graphs were discussed,and relevant improvement suggestions were proposed.Practitioners and researchers can gain insights into the construction of technical theories and practical guidance of enterprise risk knowledge graphs based on this foundation.展开更多
In order to study the combustion characteristics of tar in biomass gasifier inner wall and gasification gas,“tobacco stem semi-tar inside furnace”,“tobacco stem tar inside furnace”and“tobacco stem tar out-of-furn...In order to study the combustion characteristics of tar in biomass gasifier inner wall and gasification gas,“tobacco stem semi-tar inside furnace”,“tobacco stem tar inside furnace”and“tobacco stem tar out-of-furnace”were subjected to thermogravimetric experiments,and the combustion characteristics and kinetic characteristics were analyzed.The result shows that“tobacco stem semi-tar inside furnace”has the highest value and“tobacco stem tar out-of-furnace”is has the lowest value on ignition characteristics,combustion characteristics and combustible stability;“tobacco stem semi-tar inside furnace”has the lowest value and“tobacco stem tar outside furnace”has the highest value on burnout characteristics;“tobacco stem tar outside furnace”has the highest value and“tobacco stem tar inside furnace”has the lowest value on integrated combustion characteristics.展开更多
Accurate assessment of postfire vegetation recovery is important for forest management and the conservation of species diversity.Topography is an important factor aff ecting vegetation recovery but whether species com...Accurate assessment of postfire vegetation recovery is important for forest management and the conservation of species diversity.Topography is an important factor aff ecting vegetation recovery but whether species composition varies with diff erent recovery stages and between valleys and slopes is unclear.Using fi eld data and a space-for-time substitution method,we quantifi ed species richness and diversity to obtain the successional trajectories of valleys and slopes.We surveyed the species of 10 burned areas from 1986 to 2010 in the Greater Khingan Mountains in northeastern China,and found that with increasing postfi re recovery time,species richness in both valleys and slopes gradually decreased.However,species richness in valleys was relatively higher.Shrubs recovered rapidly in the valleys,and species diversity maximized approximately 11 years after fi re.However,it maximized 17–18 years after fi re on the slopes.Numerous shade-tolerant species were present in the valleys 11 years after fi re but not until after 18 years on slopes.Larch appeared earlier than 11 years after fi re and its recovery was slow in the valleys but appeared quickly on slopes and established dominance early.Our study provides some new insights into vegetation succession after fi re at local scales.After fi re,the vegetation recovery processes diff er with topography and it aff ects the initial rate of recovery and species composition at diff erent successional stages.展开更多
Natural gas hydrate (NGH)is considered as one of the new clean energy sources of the 21st century with the highest potential.The environmental issues of NGH production have attracted the close attention of scientists ...Natural gas hydrate (NGH)is considered as one of the new clean energy sources of the 21st century with the highest potential.The environmental issues of NGH production have attracted the close attention of scientists in various countries.From May 10 to July 9,2017,the first offshore NGH production test in the South China Sea (SCS)was conducted by the China Geological Survey.In addition,environmental security has also been effectively guaranteed via a comprehensive environmental monitoring system built during the NGH production test.The monitoring system considered sea-surface atmosphere methane and carbon dioxide concentrations,dissolved methane in the sea water column,and the seafloor physical oceanography and marine chemistry environment.The whole process was monitored via multiple means, in multiple layers,in all domains,and in real time.After the production test,an environmental investigation was promptly conducted to evaluate the environmental impact of the NGH production test. The monitoring results showed that the dissolved methane concentration in seawater and the near-seabed environment characteristics after the test were consistent with the background values,indicating that the NGH production test did not cause environmental problems such as methane leakage.展开更多
The formation process of aromatic hydrocarbon tar during the pyrolysis process of biomass components of cel-lulose and lignin was carried out by quantum chemical calculation based on density functional theory method B...The formation process of aromatic hydrocarbon tar during the pyrolysis process of biomass components of cel-lulose and lignin was carried out by quantum chemical calculation based on density functional theory method B3LYP/6-31G++(d,p).5 Hydroxymethylfurfural was chosen as the model compound of cellulose and hemicel-lulose,and syringa ldehyde was chosen as the model compound of lignin.The calculation results show that the formation process of cellulose monocyclic aromatic hydrocarbon tar is the conversion process of benzene ring from furan ring,and the highest reaction energy barrier appears in the process of decarbonylation,which is 370.8 kJ/mol.The formation of lignin monocyclic aromatic hydrocarbon tar is mainly the process of side chains removal and the formation of phenol,The highest reaction energy barrier appears in the process of decarbonyla-tion,which is 374.9 kJ/mol.The reaction mechanism of phenanthrene formation from naphthalene was selected as the formation of cellulose and lignin polycydic aromatic hydrocarbon tar.The calculation results show that he total barrier of the pathway that naphthalene dehydrogenates to form naphthalene free radicals and then reacts with ethylene twice by addition action,finally occurs cydization reactions and isomerizes to produce phenan-threne is lowest,that is 38.6 kJ/mol.So it is proved that the evolution of tar is the process of deoxygenation and cyclization with the increase of the temperature from a theoretical point of view.展开更多
To date, the selection of the magnetic field line used to match the chamfered inner and outer channel walls in a magnetically shielded Hall thruster has not been quantitatively studied. Hence, an experimental study wa...To date, the selection of the magnetic field line used to match the chamfered inner and outer channel walls in a magnetically shielded Hall thruster has not been quantitatively studied. Hence, an experimental study was conducted on a 1.35 k W magnetically shielded Hall thruster with a xenon propellant. Different magnetic field lines were chosen, and corresponding tangentially matched channel walls were manufactured and utilized. The results demonstrate that high performance and a qualified anti-sputtering effect cannot be achieved simultaneously. When the magnetic field lines that match the chamfered wall have a strength at the channel centerline of less than 12% of the maximum field strength, the channel wall can be adequately protected from ion sputtering. When the magnetic field lines have a strength ratio of 12%–20%, the thruster performance is high. These findings provide the first significant quantitative design reference for the match between the magnetic field line and chamfered channel wall in magnetically shielded Hall thrusters.展开更多
CsgA protein monomers consist of aβ-helix of five repeat units possessing several conservative residues and thus,inherently fibrillate.CsgA protein monomers could self-assemble into hierarchical nanofiber structure c...CsgA protein monomers consist of aβ-helix of five repeat units possessing several conservative residues and thus,inherently fibrillate.CsgA protein monomers could self-assemble into hierarchical nanofiber structure cross multiple scales after expression and secretion by E.Coli cells.Previous researches show that CsgA nanofibers could provide adhesion,stiffness,and mechanical homogeneity for the biofilms,host cells’fibronectin binding for internalization,or protection against phage attack.CsgA nanofibers have obtained various applications in material science and synthetic biology.To illustrate,CsgA nanofibers have characteristics of intrinsic hierarchical structures across multiple scales,robustness in harsh environments and programmable functionality via biological tools.Studying the force spectrum or mechanical properties of the nanofiber can provide fundamental information of self-assembly process and ultra-stability in extreme conditions.Single molecule techniques such as atomic force microscopy,optical tweezers,and magnetic tweezers have been widely applied to study proteins.In these studies,proteins are usually chemically conjugated or genetically constructed to have a tag such as histidine,cysteine or biotin.Genetic engineering requires modification of the plasmids encoding the specific protein,and also involve special protein expression and purification.Such study needs collaboration from multi-disciplinary.It normally studies one protein at a time which gives out clear signal but lacks throughput and efficiency.Here we have established a simple method to measure all kinds of proteins without labels.The carboxyl terminus of a protein is attached to the amine group on a magnetic bead,and the amine terminus of the protein is attached to glutaraldehyde on the glass slide.Then we used magnetic tweezers to manipulate and stretched the bead and protein.Extension versus rotation relation was used to identify a single protein or protein fibril.The fiber under tension is also observed by Scanning Electronic Microcopy which convinces that single CsgA-His fibril is linked to a microbead.The peak of diameter distribution is around 15 nm.The fracture of fibers was observed in real time on SEM.Force-extension curves of single fibers are obtained in real time.The force-extension curves generally agree with the worm like chain model.The persistence lengths from the fitting are from 0.9 to 49.8 nm.The elongation ratio increases gradually with force until reaches a plateau.The maximum elongation ratio of 78 nanofibers were made into an elongation ratio distribution diagram,more than half of CsgA-His nanofibers has an elongation ratio from 0 to 2,some are distributed in 2~10,and a few are distributed in 10~18.The maximum elongation ratio of CsgA-His nanofibers is 17.1,indicating that the fibril’s flexibility is much higher than DNA or silk fiber.For forces less than 20 pN,the extension was reversible.With a 42.1 pN holding force,the extension jumped in steps of from 30 to 365 nm and was irreversible.At the scale tested,the jumps corresponded to the unfolding of multiple beta sheets in the fiber.Work for CsgA-His nanofibers during stretching increase with the normalized strain fractions.The experimental data agree with a theoretical prediction for a single CsgA protein from a SMD calculation.Therefore,our results provide key information for the understandings of CsgA protein nanofiber assembly and biofilm robustness.展开更多
Rheumatoid arthritis(RA)is an inflammatory autoimmune disease triggered by antigenic peptides with environmental and genetic risk factors.It has been shown that antigen-specific targeting could be a promising therapeu...Rheumatoid arthritis(RA)is an inflammatory autoimmune disease triggered by antigenic peptides with environmental and genetic risk factors.It has been shown that antigen-specific targeting could be a promising therapeutical strategy for RA by restoring immune tolerance to self-antigens without compromising normal immunity.Citrullination of antigens enhances antigenic properties and induces autoimmune responses.Here,we showed that citrullinated antigenic(citAg)vaccine ameliorated collageninduced arthritis with decreased T-helper 1(Th1)and Th17 cells,downregulated proinflammatory cytokines including interlukin-6 and tumor necrosis factor-a,and inhibited antigen recall responses.B cell receptor sequencing further revealed that citAg vaccine could dampen the dysregulated V(D)J recombination,restoring the immune repertoire.Taken together,the results demonstrated that citAg vaccine might have a therapeutic effect on RA.展开更多
Targeted construction of new covalent organic frameworks(COFs)with specific purposes and rationalities to build colorimetric assay platform for environmental pollutant monitoring have attracted increasing interest.How...Targeted construction of new covalent organic frameworks(COFs)with specific purposes and rationalities to build colorimetric assay platform for environmental pollutant monitoring have attracted increasing interest.However,it is still challenging due to lack of available coordination sites inside COFs pores and only a slight bonding ability for anchoring metal.In this work,a two-dimensional(2D)COFs(termed as Tz-COF)with high crystallinity,excellent chemical stability,and abundant sulfur coordination in its skeletons was synthesized and used for the confined growth of Au NPs.It was found that the Au NPs showed significant dispersibility for the support of Tz-COF.The proposed Tz-COF@Au NPs possessed outstanding Hg^(2+)-activated peroxidase-like activity benefited from physicochemical properties of gold amalgam and synergistic effect between COFs and Au NPs to oxidize chromogenic substrate.Based on highly efficient activity and distinctive color evolution,the strategy for detecting Hg^(2+)was developed and successfully applied to determine the content of Hg^(2+)in real environmental samples.This work manifests that a potential strategy to establish a colorimetric assay platform for environmental pollutant monitoring based on the targeted manufacturing of novel COFs with specific functions.展开更多
Molecular glues are typically small chemical molecules that act at the interface between a target protein and degradation machinery to trigger ternary complex formation.Identifying molecular glues is challenging.There...Molecular glues are typically small chemical molecules that act at the interface between a target protein and degradation machinery to trigger ternary complex formation.Identifying molecular glues is challenging.There is a scarcity of target-specific upregulating molecular glues,which are highly anticipated for numerous targets,including P53.P53 is degraded in proteasomes through polyubiquitination by specific E3 ligases,whereas deubiquitinases(DUBs)remove polyubiquitination conjugates to counteract these E3ligases.Thus,small-molecular glues that enhance P53 anchoring to DUBs may stabilize P53 through deubiquitination.Here,using small-molecule microarray-based technology and unbiased screening,we identified three potential molecular glues that may tether P53 to the DUB,USP7,and elevate the P53 level.Among the molecular glues,bromocriptine(BC)is an FDA-approved drug with the most robust effects.BC was further verified to increase P53 stability via the predicted molecular glue mechanism engaging USP7.Consistent with P53 upregulation in cancer cells,BC was shown to inhibit the proliferation of cancer cells in vitro and suppress tumor growth in a xenograft model.In summary,we established a potential screening platform and identified potential molecular glues upregulating P53.Similar strategies could be applied to the identification of other types of molecular glues that may benefit drug discovery and chemical biology studies.展开更多
Background:Local inflammation induced by microglial activation plays a significant role in the pathological process of cerebral ischemia.Angelica keiskei(Miq.)Koidz.,a traditional botanical drug,can be used as a diure...Background:Local inflammation induced by microglial activation plays a significant role in the pathological process of cerebral ischemia.Angelica keiskei(Miq.)Koidz.,a traditional botanical drug,can be used as a diuretic,laxative or galactagogue.Xanthoangelol(XA),an active chalcone compound from the aerial part of Angelica keiskei,has anti-inflammatory effects in the peripheral tissues.However,its effect against neuroinflammation is yet unclear.Objective:The present study aims to investigate whether XA could mitigate ischemic stroke damage through attenuating neuroinflammation due to microglia activation.Methods:Middle cerebral artery occlusion/reperfusion(MCAO/R)induced cerebral ischemia and oxygen-glucose deprivation/reperfusion(OGD/R)or lipopolysaccharide(LPS)-stimulated BV2 microglia cells were utilized to evaluate XA’s protection against ischemic injury and neuroinflammation.The severity of brain injury was assessed using 2,3,5-triphenyltetrazolium chloride(TTC)staining and neurological assessment.The expressions of inflam-matory cytokines were quantified by enzyme-linked immunosorbent assay(ELISA)and reverse transcription-polymerase chain reaction(RT-PCR).Reactive oxygen species(ROS)were assessed using dichlorodihydrofluores-cein diacetate(DCF-DA)staining.NF-κB p65 nuclear translocation was confirmed by immunofluorescence(IF)staining.The expressions of proteins were quantified by Western blotting.Results:XA was efficacious in reducing infarct size and improving neurological function in MCAO/R mice.In ischemic brain tissue,XA reduced microglial activation and proinflammatory cytokine expression.In lipopolysac-charide(LPS)and OGD/R-induced cell models,XA suppressed the production of ROS and decreased the secretion of inflammatory cytokines.Additionally,XA suppressed the nuclear translocation and phosphorylation of NF-κB p65 and blocked the activation of NLR family pyrin domain containing 3(NLRP3)inflammasome.The protec-tion of XA against MCAO/R-induced damages was not attenuated in TLR4^(−/−)and MD2^(−/−)mice.Mito-TEMPO treatment reversed XA’s anti-inflammatory properties in OGD/R-induced BV2 cells.Conclusion:XA attenuates ischemic stroke injury by suppressing microglial inflammatory responses.This efficacy is tied to its antioxidant activity and is independent of Toll-like receptor 4(TLR4)or myeloid differentiation protein 2(MD2).展开更多
Cardiovascular disease(CVD)is a global health problem and is thought to be responsible for almost half of all deaths in the world.Nevertheless,currently available diagnostic methods for CVD are strongly depended on cl...Cardiovascular disease(CVD)is a global health problem and is thought to be responsible for almost half of all deaths in the world.Nevertheless,currently available diagnostic methods for CVD are strongly depended on clinical observation and monitoring,which commonly result in false diagnosis.Herein,an attractive strategy of a metal-organic framework(MOF)nanofilm-based laser desorption/ionization mass spectrometry(LDI-MS)was developed for enhancing serum metabolic profiling,which could provide precise diagnosis and molecular subtyping of CVD.The porous MOF nanofilm fabricated on indium-tin oxide(ITO)glass possessed enhanced ionization efficiency and size-exclusion effect,which endowed it as substrate with high sensitivity and selectivity for serum metabolites.Furthermore,the MOF nanofilm with uniform surface and high orientation provided high-quality and high-reproducibility serum metabolic profiles(SMPs)without any tedious pretreatment.Further analysis of extracted serum metabolic fingerprints could successfully distinguish patients with CVD from healthy controls and also differentiate two major subtypes of CVD.This work not only extends the application of MOF nanofilm as an attractive MS probe,but also provide an alternative way for precise diagnosis of CVD in molecular level.展开更多
以大肠杆菌菌毛蛋白CsgA组装形成的蛋白纤维为模板,引导不同数目的DNA四面体(tetrahedron DNA nanostructure,TDN)组装构建了蛋白-DNA亚微米复合结构. TDN经次氮基三乙酸(NTA)修饰后在Ni2+的螯合作用下与CsgA蛋白单体结合,利用CsgA的自...以大肠杆菌菌毛蛋白CsgA组装形成的蛋白纤维为模板,引导不同数目的DNA四面体(tetrahedron DNA nanostructure,TDN)组装构建了蛋白-DNA亚微米复合结构. TDN经次氮基三乙酸(NTA)修饰后在Ni2+的螯合作用下与CsgA蛋白单体结合,利用CsgA的自组装能力将TDN有序地排列在形成的蛋白纤维上.原子力显微镜(atomic force microscopy,AFM)成像结果表明,控制TDN与CsgA的浓度比为1:500,可以得到单个TDN与蛋白纤维的组装产物.将2个TDN通过杂交形成二聚体(dTDN)与CsgA蛋白进行组装,得到的亚微米复合结构保持了很好的直链形态,在蛋白纤维上连有3个dTDN结构的比例达44%.展开更多
An efficient method for the activation of C-terminal 4-mecaptoproline-or penicillamine-containing peptide hydrazides in ligation re-actions is reported herein.The corresp on ding peptide hydrazides can be readily prep...An efficient method for the activation of C-terminal 4-mecaptoproline-or penicillamine-containing peptide hydrazides in ligation re-actions is reported herein.The corresp on ding peptide hydrazides can be readily prepared using solid-phase peptide synthesis,and subsequently activated by acetylacet one(acac)without exoge nous thiol additives.Strained peptidyl thiolactones could be the possible reactive in termediates that drastically accelerate the reacti on rates at the sterically demandi ng proline and valine sites.This developed protocol allows for sequential peptide ligations in a one-pot manner,and expedites the assembly of mucin 1(MUC-1)variable number tandem repeat(VNTR)trimers in various glycosylated forms.展开更多
SIZ1 is a small ubiquitin-related modifier(SUMO) E3 ligase that mediates post-translational SUMO modification of target proteins and thereby regulates developmental processes and hormonal and environmental stress re...SIZ1 is a small ubiquitin-related modifier(SUMO) E3 ligase that mediates post-translational SUMO modification of target proteins and thereby regulates developmental processes and hormonal and environmental stress responses in Arabidopsis. However,the role of SUMO E3 ligases in crop plants is largely unknown. Here, we identified and characterized two Glycine max(soybean) SUMO E3 ligases, GmSIZ1a and GmSIZ1b. Expression of GmSIZ1a and GmSIZ1b was induced in response to salicylic acid(SA), heat, and dehydration treatment, but not in response to cold, abscisic acid(ABA), and Na Cl treatment. Although GmSIZ1a was expressed at higher levels than GmSIZ1b, both genes encoded proteins with SUMO E3 ligase activity in vivo.Heterologous expression of GmSIZ1a or GmSIZ1b rescued the mutant phenotype of Arabidopsis siz1-2, including dwarfism, constitutively activated expression of pathogen-related genes, and ABA-sensitive seed germination.Simultaneous downregulation of GmSIZ1a and GmSIZ1b(GmSIZ1a/b) using RNA interference(RNAi)-mediated gene silencing decreased heat shock-induced SUMO conjugation in soybean. Moreover, GmSIZ1 RNAi plants exhibited reduced plant height and leaf size. However,unlike Arabidopsis siz1-2 mutant plants, flowering time and SA levels were not significantly altered in GmSIZ1 RNAi plants. Taken together, our results indicate that GmSIZ1a and GmSIZ1b mediate SUMO modification and positively regulate vegetative growth in soybean.展开更多
Research on innate lymphoid cells (ILC) has recently been a fast paced topic of immunological research. As ILCs are able to produce signature Th cytokine, ILCs have garnered considerable attention and have been desc...Research on innate lymphoid cells (ILC) has recently been a fast paced topic of immunological research. As ILCs are able to produce signature Th cytokine, ILCs have garnered considerable attention and have been described to represent the innate counterpart of the CD4+ T helper (Th) cells. The development and function of ILCs are precisely regulated by a network of crucial tran- scription factors, which are also involved in the devel- opment or differentiation of conventional natural killer (cNK) cells and T cells. In this review, we will summarize the key transcriptional regulators and their functions through each phases of ILC development. With the phase of ILC lineage commitment, we will focus in particular on the roles of the transcription regulators Id2 and GATA-3, which in collaboration with other transcriptional factors, are critically involved in the generation of ILC fate determined progenitors. Once an ILC lineage has been established, several other transcription factors are required for the specification and functional regulation of distinct mature ILC subsets. Thus, a comprehensive understanding of the interactions and regulatory mech- anisms mediated by these transcription factors will help us to further understand how ILCs exert their helper-like functions and bridge the innate and adaptive immunity.展开更多
基金This work is supported by the National Natural Science Foundation of China under Grant 52274057,52074340 and 51874335the Major Scientific and Technological Projects of CNPC under Grant ZD2019-183-008+2 种基金the Major Scientific and Technological Projects of CNOOC under Grant CCL2022RCPS0397RSNthe Science and Technology Support Plan for Youth Innovation of University in Shandong Province under Grant 2019KJH002111 Project under Grant B08028.
文摘Data-driven surrogate models that assist with efficient evolutionary algorithms to find the optimal development scheme have been widely used to solve reservoir production optimization problems.However,existing research suggests that the effectiveness of a surrogate model can vary depending on the complexity of the design problem.A surrogate model that has demonstrated success in one scenario may not perform as well in others.In the absence of prior knowledge,finding a promising surrogate model that performs well for an unknown reservoir is challenging.Moreover,the optimization process often relies on a single evolutionary algorithm,which can yield varying results across different cases.To address these limitations,this paper introduces a novel approach called the multi-surrogate framework with an adaptive selection mechanism(MSFASM)to tackle production optimization problems.MSFASM consists of two stages.In the first stage,a reduced-dimensional broad learning system(BLS)is used to adaptively select the evolutionary algorithm with the best performance during the current optimization period.In the second stage,the multi-objective algorithm,non-dominated sorting genetic algorithm II(NSGA-II),is used as an optimizer to find a set of Pareto solutions with good performance on multiple surrogate models.A novel optimal point criterion is utilized in this stage to select the Pareto solutions,thereby obtaining the desired development schemes without increasing the computational load of the numerical simulator.The two stages are combined using sequential transfer learning.From the two most important perspectives of an evolutionary algorithm and a surrogate model,the proposed method improves adaptability to optimization problems of various reservoir types.To verify the effectiveness of the proposed method,four 100-dimensional benchmark functions and two reservoir models are tested,and the results are compared with those obtained by six other surrogate-model-based methods.The results demonstrate that our approach can obtain the maximum net present value(NPV)of the target production optimization problems.
基金supported by the Shandong Province Science and Technology Project(2023TSGC0509,2022TSGC2234)Qingdao Science and Technology Plan Project(23-1-5-yqpy-2-qy).
文摘Enterprise risk management holds significant importance in fostering sustainable growth of businesses and in serving as a critical element for regulatory bodies to uphold market order.Amidst the challenges posed by intricate and unpredictable risk factors,knowledge graph technology is effectively driving risk management,leveraging its ability to associate and infer knowledge from diverse sources.This review aims to comprehensively summarize the construction techniques of enterprise risk knowledge graphs and their prominent applications across various business scenarios.Firstly,employing bibliometric methods,the aim is to uncover the developmental trends and current research hotspots within the domain of enterprise risk knowledge graphs.In the succeeding section,systematically delineate the technical methods for knowledge extraction and fusion in the standardized construction process of enterprise risk knowledge graphs.Objectively comparing and summarizing the strengths and weaknesses of each method,we provide recommendations for addressing the existing challenges in the construction process.Subsequently,categorizing the applied research of enterprise risk knowledge graphs based on research hotspots and risk category standards,and furnishing a detailed exposition on the applicability of technical routes and methods.Finally,the future research directions that still need to be explored in enterprise risk knowledge graphs were discussed,and relevant improvement suggestions were proposed.Practitioners and researchers can gain insights into the construction of technical theories and practical guidance of enterprise risk knowledge graphs based on this foundation.
基金the Financial Supported by Hunan Provincial Natural Science Foundation of China(No.2023JJ50224)2021–2022 Hunan Province Enterprise Science and Technology Commissioner Program Project(No.2021GK5046)+1 种基金Hunan Provincial Natural Science Foundation of China(No.2022JJ50013)Hunan Provincial Natural Science Foundation of China(No.2022JJ50041).
文摘In order to study the combustion characteristics of tar in biomass gasifier inner wall and gasification gas,“tobacco stem semi-tar inside furnace”,“tobacco stem tar inside furnace”and“tobacco stem tar out-of-furnace”were subjected to thermogravimetric experiments,and the combustion characteristics and kinetic characteristics were analyzed.The result shows that“tobacco stem semi-tar inside furnace”has the highest value and“tobacco stem tar out-of-furnace”is has the lowest value on ignition characteristics,combustion characteristics and combustible stability;“tobacco stem semi-tar inside furnace”has the lowest value and“tobacco stem tar outside furnace”has the highest value on burnout characteristics;“tobacco stem tar outside furnace”has the highest value and“tobacco stem tar inside furnace”has the lowest value on integrated combustion characteristics.
基金funded by the National Natural Science Foundation of China(No.41871103).
文摘Accurate assessment of postfire vegetation recovery is important for forest management and the conservation of species diversity.Topography is an important factor aff ecting vegetation recovery but whether species composition varies with diff erent recovery stages and between valleys and slopes is unclear.Using fi eld data and a space-for-time substitution method,we quantifi ed species richness and diversity to obtain the successional trajectories of valleys and slopes.We surveyed the species of 10 burned areas from 1986 to 2010 in the Greater Khingan Mountains in northeastern China,and found that with increasing postfi re recovery time,species richness in both valleys and slopes gradually decreased.However,species richness in valleys was relatively higher.Shrubs recovered rapidly in the valleys,and species diversity maximized approximately 11 years after fi re.However,it maximized 17–18 years after fi re on the slopes.Numerous shade-tolerant species were present in the valleys 11 years after fi re but not until after 18 years on slopes.Larch appeared earlier than 11 years after fi re and its recovery was slow in the valleys but appeared quickly on slopes and established dominance early.Our study provides some new insights into vegetation succession after fi re at local scales.After fi re,the vegetation recovery processes diff er with topography and it aff ects the initial rate of recovery and species composition at diff erent successional stages.
文摘Natural gas hydrate (NGH)is considered as one of the new clean energy sources of the 21st century with the highest potential.The environmental issues of NGH production have attracted the close attention of scientists in various countries.From May 10 to July 9,2017,the first offshore NGH production test in the South China Sea (SCS)was conducted by the China Geological Survey.In addition,environmental security has also been effectively guaranteed via a comprehensive environmental monitoring system built during the NGH production test.The monitoring system considered sea-surface atmosphere methane and carbon dioxide concentrations,dissolved methane in the sea water column,and the seafloor physical oceanography and marine chemistry environment.The whole process was monitored via multiple means, in multiple layers,in all domains,and in real time.After the production test,an environmental investigation was promptly conducted to evaluate the environmental impact of the NGH production test. The monitoring results showed that the dissolved methane concentration in seawater and the near-seabed environment characteristics after the test were consistent with the background values,indicating that the NGH production test did not cause environmental problems such as methane leakage.
基金supported by 2021–2022 Hunan Province Enterprise Science and Technology Commissioner Program Project under the Contract No.2021GK5046the project supported by Scientific Research Fund of Hunan Provincial Education Department under the Contract No.19C0476the project supported by Scientific Research Fund of Hunan Institute of Engineering under the Contract No.XJ1902.
文摘The formation process of aromatic hydrocarbon tar during the pyrolysis process of biomass components of cel-lulose and lignin was carried out by quantum chemical calculation based on density functional theory method B3LYP/6-31G++(d,p).5 Hydroxymethylfurfural was chosen as the model compound of cellulose and hemicel-lulose,and syringa ldehyde was chosen as the model compound of lignin.The calculation results show that the formation process of cellulose monocyclic aromatic hydrocarbon tar is the conversion process of benzene ring from furan ring,and the highest reaction energy barrier appears in the process of decarbonylation,which is 370.8 kJ/mol.The formation of lignin monocyclic aromatic hydrocarbon tar is mainly the process of side chains removal and the formation of phenol,The highest reaction energy barrier appears in the process of decarbonyla-tion,which is 374.9 kJ/mol.The reaction mechanism of phenanthrene formation from naphthalene was selected as the formation of cellulose and lignin polycydic aromatic hydrocarbon tar.The calculation results show that he total barrier of the pathway that naphthalene dehydrogenates to form naphthalene free radicals and then reacts with ethylene twice by addition action,finally occurs cydization reactions and isomerizes to produce phenan-threne is lowest,that is 38.6 kJ/mol.So it is proved that the evolution of tar is the process of deoxygenation and cyclization with the increase of the temperature from a theoretical point of view.
基金funded by National Natural Science Foundation of China (Nos. 52076054 and 51736003)Civil Aerospace Technology Pre-research Project (No. D03015)Defense Industrial Technology Development Program (No. JCKY2019603B005)。
文摘To date, the selection of the magnetic field line used to match the chamfered inner and outer channel walls in a magnetically shielded Hall thruster has not been quantitatively studied. Hence, an experimental study was conducted on a 1.35 k W magnetically shielded Hall thruster with a xenon propellant. Different magnetic field lines were chosen, and corresponding tangentially matched channel walls were manufactured and utilized. The results demonstrate that high performance and a qualified anti-sputtering effect cannot be achieved simultaneously. When the magnetic field lines that match the chamfered wall have a strength at the channel centerline of less than 12% of the maximum field strength, the channel wall can be adequately protected from ion sputtering. When the magnetic field lines have a strength ratio of 12%–20%, the thruster performance is high. These findings provide the first significant quantitative design reference for the match between the magnetic field line and chamfered channel wall in magnetically shielded Hall thrusters.
基金supported by the National Science Foundation of China ( 11772133, 11372116)
文摘CsgA protein monomers consist of aβ-helix of five repeat units possessing several conservative residues and thus,inherently fibrillate.CsgA protein monomers could self-assemble into hierarchical nanofiber structure cross multiple scales after expression and secretion by E.Coli cells.Previous researches show that CsgA nanofibers could provide adhesion,stiffness,and mechanical homogeneity for the biofilms,host cells’fibronectin binding for internalization,or protection against phage attack.CsgA nanofibers have obtained various applications in material science and synthetic biology.To illustrate,CsgA nanofibers have characteristics of intrinsic hierarchical structures across multiple scales,robustness in harsh environments and programmable functionality via biological tools.Studying the force spectrum or mechanical properties of the nanofiber can provide fundamental information of self-assembly process and ultra-stability in extreme conditions.Single molecule techniques such as atomic force microscopy,optical tweezers,and magnetic tweezers have been widely applied to study proteins.In these studies,proteins are usually chemically conjugated or genetically constructed to have a tag such as histidine,cysteine or biotin.Genetic engineering requires modification of the plasmids encoding the specific protein,and also involve special protein expression and purification.Such study needs collaboration from multi-disciplinary.It normally studies one protein at a time which gives out clear signal but lacks throughput and efficiency.Here we have established a simple method to measure all kinds of proteins without labels.The carboxyl terminus of a protein is attached to the amine group on a magnetic bead,and the amine terminus of the protein is attached to glutaraldehyde on the glass slide.Then we used magnetic tweezers to manipulate and stretched the bead and protein.Extension versus rotation relation was used to identify a single protein or protein fibril.The fiber under tension is also observed by Scanning Electronic Microcopy which convinces that single CsgA-His fibril is linked to a microbead.The peak of diameter distribution is around 15 nm.The fracture of fibers was observed in real time on SEM.Force-extension curves of single fibers are obtained in real time.The force-extension curves generally agree with the worm like chain model.The persistence lengths from the fitting are from 0.9 to 49.8 nm.The elongation ratio increases gradually with force until reaches a plateau.The maximum elongation ratio of 78 nanofibers were made into an elongation ratio distribution diagram,more than half of CsgA-His nanofibers has an elongation ratio from 0 to 2,some are distributed in 2~10,and a few are distributed in 10~18.The maximum elongation ratio of CsgA-His nanofibers is 17.1,indicating that the fibril’s flexibility is much higher than DNA or silk fiber.For forces less than 20 pN,the extension was reversible.With a 42.1 pN holding force,the extension jumped in steps of from 30 to 365 nm and was irreversible.At the scale tested,the jumps corresponded to the unfolding of multiple beta sheets in the fiber.Work for CsgA-His nanofibers during stretching increase with the normalized strain fractions.The experimental data agree with a theoretical prediction for a single CsgA protein from a SMD calculation.Therefore,our results provide key information for the understandings of CsgA protein nanofiber assembly and biofilm robustness.
基金supported by the Guangdong Basic and Applied Basic Research Foundation(2020B1515130005)the National Natural Science Foundation of China(82371807,82171773,92374202,and 32141004)+1 种基金the National Key R&D Program of China(2022YFC3602000)the Beijing Nova Program(Z181100006218044 and Z211100002121163)。
文摘Rheumatoid arthritis(RA)is an inflammatory autoimmune disease triggered by antigenic peptides with environmental and genetic risk factors.It has been shown that antigen-specific targeting could be a promising therapeutical strategy for RA by restoring immune tolerance to self-antigens without compromising normal immunity.Citrullination of antigens enhances antigenic properties and induces autoimmune responses.Here,we showed that citrullinated antigenic(citAg)vaccine ameliorated collageninduced arthritis with decreased T-helper 1(Th1)and Th17 cells,downregulated proinflammatory cytokines including interlukin-6 and tumor necrosis factor-a,and inhibited antigen recall responses.B cell receptor sequencing further revealed that citAg vaccine could dampen the dysregulated V(D)J recombination,restoring the immune repertoire.Taken together,the results demonstrated that citAg vaccine might have a therapeutic effect on RA.
基金supported by the National Natural Science Foundation of China(Nos.22274021,21974021 and 22036001).
文摘Targeted construction of new covalent organic frameworks(COFs)with specific purposes and rationalities to build colorimetric assay platform for environmental pollutant monitoring have attracted increasing interest.However,it is still challenging due to lack of available coordination sites inside COFs pores and only a slight bonding ability for anchoring metal.In this work,a two-dimensional(2D)COFs(termed as Tz-COF)with high crystallinity,excellent chemical stability,and abundant sulfur coordination in its skeletons was synthesized and used for the confined growth of Au NPs.It was found that the Au NPs showed significant dispersibility for the support of Tz-COF.The proposed Tz-COF@Au NPs possessed outstanding Hg^(2+)-activated peroxidase-like activity benefited from physicochemical properties of gold amalgam and synergistic effect between COFs and Au NPs to oxidize chromogenic substrate.Based on highly efficient activity and distinctive color evolution,the strategy for detecting Hg^(2+)was developed and successfully applied to determine the content of Hg^(2+)in real environmental samples.This work manifests that a potential strategy to establish a colorimetric assay platform for environmental pollutant monitoring based on the targeted manufacturing of novel COFs with specific functions.
基金supported by the National Natural Science Foundation of China(82050008,92049301,81925012,32200797,32271510,32200602,and 82030106)the Science and Technology Commission of Shanghai Municipality(20JC1410900)+3 种基金Shanghai Municipal Science and Technology Key Laboratory Project(23dz2260100)the Innovation Program of Shanghai Municipal Education Commission(2021-01-07-00-07-E00074)the Shanghai Municipal Science and Technology Major Project(2018SHZDZX01)the China Postdoctoral Science Foundation(BX20200093 and 2021M690038)。
文摘Molecular glues are typically small chemical molecules that act at the interface between a target protein and degradation machinery to trigger ternary complex formation.Identifying molecular glues is challenging.There is a scarcity of target-specific upregulating molecular glues,which are highly anticipated for numerous targets,including P53.P53 is degraded in proteasomes through polyubiquitination by specific E3 ligases,whereas deubiquitinases(DUBs)remove polyubiquitination conjugates to counteract these E3ligases.Thus,small-molecular glues that enhance P53 anchoring to DUBs may stabilize P53 through deubiquitination.Here,using small-molecule microarray-based technology and unbiased screening,we identified three potential molecular glues that may tether P53 to the DUB,USP7,and elevate the P53 level.Among the molecular glues,bromocriptine(BC)is an FDA-approved drug with the most robust effects.BC was further verified to increase P53 stability via the predicted molecular glue mechanism engaging USP7.Consistent with P53 upregulation in cancer cells,BC was shown to inhibit the proliferation of cancer cells in vitro and suppress tumor growth in a xenograft model.In summary,we established a potential screening platform and identified potential molecular glues upregulating P53.Similar strategies could be applied to the identification of other types of molecular glues that may benefit drug discovery and chemical biology studies.
文摘Background:Local inflammation induced by microglial activation plays a significant role in the pathological process of cerebral ischemia.Angelica keiskei(Miq.)Koidz.,a traditional botanical drug,can be used as a diuretic,laxative or galactagogue.Xanthoangelol(XA),an active chalcone compound from the aerial part of Angelica keiskei,has anti-inflammatory effects in the peripheral tissues.However,its effect against neuroinflammation is yet unclear.Objective:The present study aims to investigate whether XA could mitigate ischemic stroke damage through attenuating neuroinflammation due to microglia activation.Methods:Middle cerebral artery occlusion/reperfusion(MCAO/R)induced cerebral ischemia and oxygen-glucose deprivation/reperfusion(OGD/R)or lipopolysaccharide(LPS)-stimulated BV2 microglia cells were utilized to evaluate XA’s protection against ischemic injury and neuroinflammation.The severity of brain injury was assessed using 2,3,5-triphenyltetrazolium chloride(TTC)staining and neurological assessment.The expressions of inflam-matory cytokines were quantified by enzyme-linked immunosorbent assay(ELISA)and reverse transcription-polymerase chain reaction(RT-PCR).Reactive oxygen species(ROS)were assessed using dichlorodihydrofluores-cein diacetate(DCF-DA)staining.NF-κB p65 nuclear translocation was confirmed by immunofluorescence(IF)staining.The expressions of proteins were quantified by Western blotting.Results:XA was efficacious in reducing infarct size and improving neurological function in MCAO/R mice.In ischemic brain tissue,XA reduced microglial activation and proinflammatory cytokine expression.In lipopolysac-charide(LPS)and OGD/R-induced cell models,XA suppressed the production of ROS and decreased the secretion of inflammatory cytokines.Additionally,XA suppressed the nuclear translocation and phosphorylation of NF-κB p65 and blocked the activation of NLR family pyrin domain containing 3(NLRP3)inflammasome.The protec-tion of XA against MCAO/R-induced damages was not attenuated in TLR4^(−/−)and MD2^(−/−)mice.Mito-TEMPO treatment reversed XA’s anti-inflammatory properties in OGD/R-induced BV2 cells.Conclusion:XA attenuates ischemic stroke injury by suppressing microglial inflammatory responses.This efficacy is tied to its antioxidant activity and is independent of Toll-like receptor 4(TLR4)or myeloid differentiation protein 2(MD2).
基金supported by the National Natural Science Foundation of China(Nos.21974021 and 22036001)the Major Project of Science and Technology of Fujian Province(No.2020HZ06006)。
文摘Cardiovascular disease(CVD)is a global health problem and is thought to be responsible for almost half of all deaths in the world.Nevertheless,currently available diagnostic methods for CVD are strongly depended on clinical observation and monitoring,which commonly result in false diagnosis.Herein,an attractive strategy of a metal-organic framework(MOF)nanofilm-based laser desorption/ionization mass spectrometry(LDI-MS)was developed for enhancing serum metabolic profiling,which could provide precise diagnosis and molecular subtyping of CVD.The porous MOF nanofilm fabricated on indium-tin oxide(ITO)glass possessed enhanced ionization efficiency and size-exclusion effect,which endowed it as substrate with high sensitivity and selectivity for serum metabolites.Furthermore,the MOF nanofilm with uniform surface and high orientation provided high-quality and high-reproducibility serum metabolic profiles(SMPs)without any tedious pretreatment.Further analysis of extracted serum metabolic fingerprints could successfully distinguish patients with CVD from healthy controls and also differentiate two major subtypes of CVD.This work not only extends the application of MOF nanofilm as an attractive MS probe,but also provide an alternative way for precise diagnosis of CVD in molecular level.
文摘以大肠杆菌菌毛蛋白CsgA组装形成的蛋白纤维为模板,引导不同数目的DNA四面体(tetrahedron DNA nanostructure,TDN)组装构建了蛋白-DNA亚微米复合结构. TDN经次氮基三乙酸(NTA)修饰后在Ni2+的螯合作用下与CsgA蛋白单体结合,利用CsgA的自组装能力将TDN有序地排列在形成的蛋白纤维上.原子力显微镜(atomic force microscopy,AFM)成像结果表明,控制TDN与CsgA的浓度比为1:500,可以得到单个TDN与蛋白纤维的组装产物.将2个TDN通过杂交形成二聚体(dTDN)与CsgA蛋白进行组装,得到的亚微米复合结构保持了很好的直链形态,在蛋白纤维上连有3个dTDN结构的比例达44%.
基金The authors are grateful for financial support from the Beijing Natural Science Foundation(No.JQ18024)the National Natural Science Foundation of China(Nos.21822701,91953111,21672012)+1 种基金the Beijing Outstanding Young Scientist Program(No.BJJWZYJH01201910001001)State Key Laboratory of Natural and Biomimetic Drugs.
文摘An efficient method for the activation of C-terminal 4-mecaptoproline-or penicillamine-containing peptide hydrazides in ligation re-actions is reported herein.The corresp on ding peptide hydrazides can be readily prepared using solid-phase peptide synthesis,and subsequently activated by acetylacet one(acac)without exoge nous thiol additives.Strained peptidyl thiolactones could be the possible reactive in termediates that drastically accelerate the reacti on rates at the sterically demandi ng proline and valine sites.This developed protocol allows for sequential peptide ligations in a one-pot manner,and expedites the assembly of mucin 1(MUC-1)variable number tandem repeat(VNTR)trimers in various glycosylated forms.
基金supported by grants from the National Natural Science Foundation of China (31471363 for J.B.J.)the Ministry of Science and Technology of the People’s Republic of China (2012CB114302 for J.B.J.)+1 种基金the National Transgenic Major Program (2009ZX08009-087B for J.B.J.and 2009ZX08009-132B for X.L.)the Chinese Academy of Sciences (XDA08010105 for J.B.J.)
文摘SIZ1 is a small ubiquitin-related modifier(SUMO) E3 ligase that mediates post-translational SUMO modification of target proteins and thereby regulates developmental processes and hormonal and environmental stress responses in Arabidopsis. However,the role of SUMO E3 ligases in crop plants is largely unknown. Here, we identified and characterized two Glycine max(soybean) SUMO E3 ligases, GmSIZ1a and GmSIZ1b. Expression of GmSIZ1a and GmSIZ1b was induced in response to salicylic acid(SA), heat, and dehydration treatment, but not in response to cold, abscisic acid(ABA), and Na Cl treatment. Although GmSIZ1a was expressed at higher levels than GmSIZ1b, both genes encoded proteins with SUMO E3 ligase activity in vivo.Heterologous expression of GmSIZ1a or GmSIZ1b rescued the mutant phenotype of Arabidopsis siz1-2, including dwarfism, constitutively activated expression of pathogen-related genes, and ABA-sensitive seed germination.Simultaneous downregulation of GmSIZ1a and GmSIZ1b(GmSIZ1a/b) using RNA interference(RNAi)-mediated gene silencing decreased heat shock-induced SUMO conjugation in soybean. Moreover, GmSIZ1 RNAi plants exhibited reduced plant height and leaf size. However,unlike Arabidopsis siz1-2 mutant plants, flowering time and SA levels were not significantly altered in GmSIZ1 RNAi plants. Taken together, our results indicate that GmSIZ1a and GmSIZ1b mediate SUMO modification and positively regulate vegetative growth in soybean.
文摘Research on innate lymphoid cells (ILC) has recently been a fast paced topic of immunological research. As ILCs are able to produce signature Th cytokine, ILCs have garnered considerable attention and have been described to represent the innate counterpart of the CD4+ T helper (Th) cells. The development and function of ILCs are precisely regulated by a network of crucial tran- scription factors, which are also involved in the devel- opment or differentiation of conventional natural killer (cNK) cells and T cells. In this review, we will summarize the key transcriptional regulators and their functions through each phases of ILC development. With the phase of ILC lineage commitment, we will focus in particular on the roles of the transcription regulators Id2 and GATA-3, which in collaboration with other transcriptional factors, are critically involved in the generation of ILC fate determined progenitors. Once an ILC lineage has been established, several other transcription factors are required for the specification and functional regulation of distinct mature ILC subsets. Thus, a comprehensive understanding of the interactions and regulatory mech- anisms mediated by these transcription factors will help us to further understand how ILCs exert their helper-like functions and bridge the innate and adaptive immunity.