The conjugation of external species with twodimensional(2D)materials has broad application prospects.In this study,we have explored the potential of noble metal/2D MOF heterostructures in hydrogen storage.Specifically...The conjugation of external species with twodimensional(2D)materials has broad application prospects.In this study,we have explored the potential of noble metal/2D MOF heterostructures in hydrogen storage.Specifically,the MgH_(2)-Ni-MOF@Pd system has shown remarkable hydrogen desorption/sorption performances,starting to liberate hydrogen at 1810C,which is 2300C lower than that of pristine MgH2.Under the catalytic effect of Ni-MOF@Pd,the dehydrogenation apparent activation energy of MgH2 is noticeably decreased from(133.5±17.5)to(34.58±1.87)kJ·moL^(-1),and the hydrogenation apparent activation energy is reduced from(70.41±7.43)to(25.78±4.64)kJ·moL^(-1),which is lowered by 63.4%.The fully-dehydrogenated MgH2-NiMOF@Pd composite rapidly uptakes hydrogen,with 2.62wt%at 100℃and 6.06 wt%at 150℃within 300 s,respectively.The mechanism analysis of MgH2 catalyzed by Ni-MOF@Pd has revealed that the transformation of Mg_2Ni and Mg_2NiH_4 could act as a"hydrogen pump",providing numerous channels for fast diffusion and transport of hydrogen atoms.Moreover,in the dehydrogenation process,the element Pd reacts with MgH_(2)to form the MgPd alloy phase,which makes MgH_(2)take precedence to decompose through the Mg-Pd alloy rather than self-decomposition,further reducing thermal stability and improving de/hydrogenation kinetics.The synergistic effect of Mg-Pd,Mg_2Ni,and the special ultra-thin 2D sheet structure of the additive is the main reason for the good hydrogen storage property of MgH_(2)-Ni-MOF@Pd.Our findings provide inspiration for designing efficient multifunctional additives with unique morphologies to optimize the hydrogen desorption/sorption behaviors of hydrogen storage materials.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.U20A20237,51863005,52271205,51871065,52371218,51863005,52271205,51871065,52371218,51971068,52101245 and 52201206)the Scientific Research and Technology Development Program of Guangxi(Nos.AA19182014,AD17195073,AA17202030-1,AB21220027 and 2021AB17045)+6 种基金the National Natural Science Foundation of Guangxi Province(Nos.2018GXNSFDA281051,2014GXNSFAA118401,2013GXNSFBA019244,2021GXNSFBA075057 and 2022GXNSFB A035632)the Scientific Research and Technology Development Program of Guilin(Nos.20210102-4 and 20210216-1)Guangxi B agui Scholar FoundationGuilin Lijiang Scholar FoundationGuangxi Collaborative Innovation Centre of Structure and Property for New Energy and MaterialsGuangxi Advanced Functional Materials FoundationApplication Talents Small Highlands and Chinesisch Deutsche Kooperationsgruppe(No.GZ1528)。
文摘The conjugation of external species with twodimensional(2D)materials has broad application prospects.In this study,we have explored the potential of noble metal/2D MOF heterostructures in hydrogen storage.Specifically,the MgH_(2)-Ni-MOF@Pd system has shown remarkable hydrogen desorption/sorption performances,starting to liberate hydrogen at 1810C,which is 2300C lower than that of pristine MgH2.Under the catalytic effect of Ni-MOF@Pd,the dehydrogenation apparent activation energy of MgH2 is noticeably decreased from(133.5±17.5)to(34.58±1.87)kJ·moL^(-1),and the hydrogenation apparent activation energy is reduced from(70.41±7.43)to(25.78±4.64)kJ·moL^(-1),which is lowered by 63.4%.The fully-dehydrogenated MgH2-NiMOF@Pd composite rapidly uptakes hydrogen,with 2.62wt%at 100℃and 6.06 wt%at 150℃within 300 s,respectively.The mechanism analysis of MgH2 catalyzed by Ni-MOF@Pd has revealed that the transformation of Mg_2Ni and Mg_2NiH_4 could act as a"hydrogen pump",providing numerous channels for fast diffusion and transport of hydrogen atoms.Moreover,in the dehydrogenation process,the element Pd reacts with MgH_(2)to form the MgPd alloy phase,which makes MgH_(2)take precedence to decompose through the Mg-Pd alloy rather than self-decomposition,further reducing thermal stability and improving de/hydrogenation kinetics.The synergistic effect of Mg-Pd,Mg_2Ni,and the special ultra-thin 2D sheet structure of the additive is the main reason for the good hydrogen storage property of MgH_(2)-Ni-MOF@Pd.Our findings provide inspiration for designing efficient multifunctional additives with unique morphologies to optimize the hydrogen desorption/sorption behaviors of hydrogen storage materials.