In recent years, due to the rapid development of high-performance small molecule acceptor (SMA) materials, the researches on p-type electron donor materials for matching with current efficient SMAs have become importa...In recent years, due to the rapid development of high-performance small molecule acceptor (SMA) materials, the researches on p-type electron donor materials for matching with current efficient SMAs have become important. By means of asymmetric strategies to optimize the energy levels and inter/intramolecular interactions of molecules, we designed and synthesized an asymmetric aromatic side chain quinoxaline-based polymer donor TPQ-0F. Meanwhile, we took advantage of F atom which could form noncovalent interaction and strong electron-withdrawing property, to obtain the optimized quinoxaline-based polymer donors TPQ-1F, TPQ-1Fi and TPQ-2F. Eventually, the binary device based on TPQ-2F achieved an efficient power conversion efficiency (PCE) of 16.27%, which attributed to balanced hole/electron mobilities, less charge carrier recombination, and more favorable aggregation morphology. Our work demonstrates the great potential of asymmetric aromatic side chain quinoxaline-based polymer donors on optimizing the morphology of blending films, improving inter/intramolecular interactions, and subtly tuning energy level, finally for more efficient organic solar cells.展开更多
The final mechanical properties of components greatly depend on their grain size. It is necessary to study the grain evolution during different thermomechanical processes. In the study, the real-time austenite grain e...The final mechanical properties of components greatly depend on their grain size. It is necessary to study the grain evolution during different thermomechanical processes. In the study, the real-time austenite grain evolution of a high-strength low-alloy(HSLA) steel during the soaking process is investigated by in situ experiments. The effects of different deformation parameters on the dynamic recrystallization(DRX) kinetic behaviors are investigated by hot compression experiments. Based on the observations and statistics of the microstructures at different thermomechanical processes, a unified grain size model is established to evaluate the effects of soaking parameters and deformation parameters on the austenite grain evolution. Also, the DRX kinetic model and critical strain model are established, which can describe the effects of the soaking process on the DRX kinetics process well. The established grain size model and DRX kinetic model are compiled into the numerical simulation software using Fortran language. The austenite grain evolution of the material under different deformation conditions is simulated, which is consistent with the experimental results. It indicates that the established model is reliable, and can be used to simulate and predict the grain size during different thermomechanical processes accurately.展开更多
基金supported by the National Natural Science Foundation of China(Nos.21875286 and 52125306,)J.Yuan acknowledges the National Natural Science Foundation of China(No.22005347)+2 种基金the Natural Science Foundation of Hunan Province(No.2021JJ20068)L.Jiang acknowledges the Open Sharing Fund for the Large-scale Instruments and Equipments of Central South University(No.CSUZC202218)the Natural Science Foundation of Hunan Province(No.2021JJ30793).
文摘In recent years, due to the rapid development of high-performance small molecule acceptor (SMA) materials, the researches on p-type electron donor materials for matching with current efficient SMAs have become important. By means of asymmetric strategies to optimize the energy levels and inter/intramolecular interactions of molecules, we designed and synthesized an asymmetric aromatic side chain quinoxaline-based polymer donor TPQ-0F. Meanwhile, we took advantage of F atom which could form noncovalent interaction and strong electron-withdrawing property, to obtain the optimized quinoxaline-based polymer donors TPQ-1F, TPQ-1Fi and TPQ-2F. Eventually, the binary device based on TPQ-2F achieved an efficient power conversion efficiency (PCE) of 16.27%, which attributed to balanced hole/electron mobilities, less charge carrier recombination, and more favorable aggregation morphology. Our work demonstrates the great potential of asymmetric aromatic side chain quinoxaline-based polymer donors on optimizing the morphology of blending films, improving inter/intramolecular interactions, and subtly tuning energy level, finally for more efficient organic solar cells.
基金funded by the National Key Research and Development Program of China(Grant No.2018YFB1106003)the National Natural Science Foundation of China(Grant No.51435007)+1 种基金the Fundamental Research Funds for the Central Universities,HUST(Grant No.2020JYCXJJ057)。
文摘The final mechanical properties of components greatly depend on their grain size. It is necessary to study the grain evolution during different thermomechanical processes. In the study, the real-time austenite grain evolution of a high-strength low-alloy(HSLA) steel during the soaking process is investigated by in situ experiments. The effects of different deformation parameters on the dynamic recrystallization(DRX) kinetic behaviors are investigated by hot compression experiments. Based on the observations and statistics of the microstructures at different thermomechanical processes, a unified grain size model is established to evaluate the effects of soaking parameters and deformation parameters on the austenite grain evolution. Also, the DRX kinetic model and critical strain model are established, which can describe the effects of the soaking process on the DRX kinetics process well. The established grain size model and DRX kinetic model are compiled into the numerical simulation software using Fortran language. The austenite grain evolution of the material under different deformation conditions is simulated, which is consistent with the experimental results. It indicates that the established model is reliable, and can be used to simulate and predict the grain size during different thermomechanical processes accurately.