The intracellular calcium ions(Ca^(2+)) act as second messenger to regulate gene transcription,cell proliferation, migration and death. Accumulating evidences have demonstrated that intracellular Ca^(2+)homeostasis is...The intracellular calcium ions(Ca^(2+)) act as second messenger to regulate gene transcription,cell proliferation, migration and death. Accumulating evidences have demonstrated that intracellular Ca^(2+)homeostasis is altered in cancer cells and the alteration is involved in tumor initiation, angiogenesis,progression and metastasis. Targeting derailed Ca^(2+)signaling for cancer therapy has become an emerging research area. This review summarizes some important Ca^(2+)channels, transporters and Ca^(2+)-ATPases,which have been reported to be altered in human cancer patients. It discusses the current research effort toward evaluation of the blockers, inhibitors or regulators for Ca^(2+)channels/transporters or Ca^(2+)-ATPase pumps as anti-cancer drugs. This review is also aimed to stimulate interest in, and support for researchinto the understanding of cellular mechanisms underlying the regulation of Ca^(2+)signaling in different cancer cells, and to search for novel therapies to cure these malignancies by targeting Ca^(2+)channels or transporters.展开更多
基金supported by NIH R01-CA185055(to Zui Pan)Chaochu Cui received postgraduate student training of internationalization level promotion program from Sun Yat-sen University(02300-52114000)
文摘The intracellular calcium ions(Ca^(2+)) act as second messenger to regulate gene transcription,cell proliferation, migration and death. Accumulating evidences have demonstrated that intracellular Ca^(2+)homeostasis is altered in cancer cells and the alteration is involved in tumor initiation, angiogenesis,progression and metastasis. Targeting derailed Ca^(2+)signaling for cancer therapy has become an emerging research area. This review summarizes some important Ca^(2+)channels, transporters and Ca^(2+)-ATPases,which have been reported to be altered in human cancer patients. It discusses the current research effort toward evaluation of the blockers, inhibitors or regulators for Ca^(2+)channels/transporters or Ca^(2+)-ATPase pumps as anti-cancer drugs. This review is also aimed to stimulate interest in, and support for researchinto the understanding of cellular mechanisms underlying the regulation of Ca^(2+)signaling in different cancer cells, and to search for novel therapies to cure these malignancies by targeting Ca^(2+)channels or transporters.