In this paper,InGaAs p-i-n photodetectors(PDs)on an InP/SiO2/Si(InPOI)substrate fabricated by ion-slicing technology are demonstrated and compared with the identical device on a commercial InP substrate.The quality of...In this paper,InGaAs p-i-n photodetectors(PDs)on an InP/SiO2/Si(InPOI)substrate fabricated by ion-slicing technology are demonstrated and compared with the identical device on a commercial InP substrate.The quality of epitaxial layers on the InPOI substrate is similar to that on the InP substrate.The photo responsivities of both devices measured at 1.55μm are comparable,which are about 0.808-0.828 A W^(-1).Although the dark current of PD on the InPOI substrate is twice as high as that of PD on the InP substrate at 300 K,the peak detectivities of both PDs are comparable.In general,the overall performance of the InPOI-based PD is comparable to the InP-based PD,demonstrating that the ion-slicing technology is a promising route to enable the highquality Si-based InP platform for the full photonic integration on a Si substrate.展开更多
基金supported by the National Key R&D Program of China(2017YFE0131300)the National Natural Science Foundation of China(62174167,61874128)+4 种基金the Frontier Science Key Program of CAS(QYZDY-SSW-JSC032)the Key Research Project of Zhejiang Laboratory(2021MD0AC01)the Program of Shanghai Academic Research Leader(19XD1404600)K.C.Wong Education Foundation(GJTD-2019-11)NCBiR within the Polish-China(WPC/130/NIR-Si/2018)。
基金supported by the National Key Research and Development Program of China(Grant No.2017YFE0131300)the National Natural Science Foundation of China(Grant Nos.U1732268,61874128,11622545,61851406,11705262,61875220,and 61804157)+7 种基金the Frontier Science Key Program of Chinese Academy of Sciences(Grant Nos.QYZDY-SSWJSC032,and ZDBS-LY-JSC009)the Chinese-Austrian Cooperative Research and Development Project(Grant No.GJHZ201950)the Shanghai Science and Technology Innovation Action Plan Program(Grant No.17511106202)the Program of Shanghai Academic Research Leader(Grant No.19XD1404600)the Shanghai Youth Top Talent ProgramShanghai Sailing Program(Grant Nos.19YF1456200,and 19YF1456400)the K.C.Wong Education Foundation(Grant No.GJTD-2019-11)the NCBiR within the Polish-China(Grant No.WPC/130/NIR-Si/2018)。
文摘In this paper,InGaAs p-i-n photodetectors(PDs)on an InP/SiO2/Si(InPOI)substrate fabricated by ion-slicing technology are demonstrated and compared with the identical device on a commercial InP substrate.The quality of epitaxial layers on the InPOI substrate is similar to that on the InP substrate.The photo responsivities of both devices measured at 1.55μm are comparable,which are about 0.808-0.828 A W^(-1).Although the dark current of PD on the InPOI substrate is twice as high as that of PD on the InP substrate at 300 K,the peak detectivities of both PDs are comparable.In general,the overall performance of the InPOI-based PD is comparable to the InP-based PD,demonstrating that the ion-slicing technology is a promising route to enable the highquality Si-based InP platform for the full photonic integration on a Si substrate.