The northeastern Tibetan Plateau serves as the frontier for the northeastward expansion of the plateau.In this area,the Tibetan Plateau interacts with the surrounding blocks,such as the Alxa Block,the Ordos Block,the ...The northeastern Tibetan Plateau serves as the frontier for the northeastward expansion of the plateau.In this area,the Tibetan Plateau interacts with the surrounding blocks,such as the Alxa Block,the Ordos Block,the Kunlun-West Qinling belt and the Sichuan Basin.Because of this expansion and interaction,this area suffers from intense deformation.At present,the evolution and deformation mechanisms of the northeastern Tibetan Plateau remain controversial.To provide new insights into these mechanisms,in this study,we conduct tomography of the P-wave velocity and radial anisotropy structures beneath the northeastern Tibetan Plateau.We choose a total of 667 teleseismic earthquakes from August 2006 to October 2020.Waveforms of these earthquakes were recorded by 921 broadband seismic stations in the northeastern Tibetan Plateau and surrounding areas.We first perform cross-correlation on waveforms of each station pair and obtain 770,749 P-wave traveltime differences.Then,we invert the differential traveltime data by applying eikonal equation-based teleseismic tomography.Finally,the P-wave velocity and radial anisotropy structures at depths from 30 to 800 km below the northeastern Tibetan Plateau are obtained.Our tomographic model shows clear low-velocity anomalies and positive radial anisotropy in the lower crust under the northeastern Qilian orogen,the northeastern Songpan-Ganzi belt and the western Qinling fold zone.These features are integrated to demonstrate the existence of lower crustal flow in the study area.Prominent low-velocity anomalies and positive radial anisotropy are found in the uppermost mantle beneath the Qilian orogen,the northeastern Songpan-Ganzi belt and western Qinling fold zone.These characteristics are combined to infer a weak lithosphere and horizontal asthenospheric flow under these tectonic units.Both the Ordos Block and the Sichuan Basin exhibit clear high-velocity anomalies and negative radial anisotropy in the uppermost mantle,thereby reflecting the high mechanical strength of the lithosphere beneath these blocks.High-velocity anomalies are also present in the upper mantle under the northern Chuandian block,potentially implying the northward subduction of the Indian plate.Furthermore,the front of the subducted Indian plate is imaged close to the Xianshuihe fault rather than the Kunlun fault.展开更多
基金supported by the National Institute of Natural Hazards, Ministry of Emergency Management of China (Grant No. ZDJ2019-18)supported by the National Natural Science Foundation of China (Grant No. U1839206)+2 种基金supported by the Open Fund Project of the State Key Laboratory of Lithospheric Evolution (Grant No. SKL-K202101)the National Natural Science Foundation of China (Grant Nos. 42174111 and 42064004)Institute of Geophysics, China Earthquake Administration (Grant Nos. DQJB16A03, DQJB17A01)
文摘The northeastern Tibetan Plateau serves as the frontier for the northeastward expansion of the plateau.In this area,the Tibetan Plateau interacts with the surrounding blocks,such as the Alxa Block,the Ordos Block,the Kunlun-West Qinling belt and the Sichuan Basin.Because of this expansion and interaction,this area suffers from intense deformation.At present,the evolution and deformation mechanisms of the northeastern Tibetan Plateau remain controversial.To provide new insights into these mechanisms,in this study,we conduct tomography of the P-wave velocity and radial anisotropy structures beneath the northeastern Tibetan Plateau.We choose a total of 667 teleseismic earthquakes from August 2006 to October 2020.Waveforms of these earthquakes were recorded by 921 broadband seismic stations in the northeastern Tibetan Plateau and surrounding areas.We first perform cross-correlation on waveforms of each station pair and obtain 770,749 P-wave traveltime differences.Then,we invert the differential traveltime data by applying eikonal equation-based teleseismic tomography.Finally,the P-wave velocity and radial anisotropy structures at depths from 30 to 800 km below the northeastern Tibetan Plateau are obtained.Our tomographic model shows clear low-velocity anomalies and positive radial anisotropy in the lower crust under the northeastern Qilian orogen,the northeastern Songpan-Ganzi belt and the western Qinling fold zone.These features are integrated to demonstrate the existence of lower crustal flow in the study area.Prominent low-velocity anomalies and positive radial anisotropy are found in the uppermost mantle beneath the Qilian orogen,the northeastern Songpan-Ganzi belt and western Qinling fold zone.These characteristics are combined to infer a weak lithosphere and horizontal asthenospheric flow under these tectonic units.Both the Ordos Block and the Sichuan Basin exhibit clear high-velocity anomalies and negative radial anisotropy in the uppermost mantle,thereby reflecting the high mechanical strength of the lithosphere beneath these blocks.High-velocity anomalies are also present in the upper mantle under the northern Chuandian block,potentially implying the northward subduction of the Indian plate.Furthermore,the front of the subducted Indian plate is imaged close to the Xianshuihe fault rather than the Kunlun fault.