Paleoproterozoic A-type granites are widely distributed in the southern margin of the North China Craton(SNCC),providing important information for understanding the Paleoproterozoic tectonic regimes in this area.This ...Paleoproterozoic A-type granites are widely distributed in the southern margin of the North China Craton(SNCC),providing important information for understanding the Paleoproterozoic tectonic regimes in this area.This paper reports newly obtained whole-rock compositions and zircon U-Pb ages for the Tieluping syenogranite porphyry(TLP)and Huoshenmiao alkali granite porphyry(HSM)in the SNCC.Zircons from the TLP and HSM have U-Pb ages of 1805±12 and 1792±14 Ma,respectively.These ages are taken to date the emplacement of these intrusions.They had high total alkali contents(K_(2)O+Na_(2)O>7.13 wt.%),with high 10000×Ga/Al ratios(3.06–3.41)and Zr+Y+Nb+Ce values(709 ppm–910 ppm)as well as high zircon saturation temperatures(864–970℃),indicative of A-type granite affinities.High Y/Nb(1.75–3.32),Ce/Nb(7.72–9.72),and Yb/Ta(2.89–5.60)ratios suggested that TLP and HSM belonged to the A2-type granite.The negative whole rockε_(Nd)(t)values(−8.4 to−6.6)and negative zirconε_(Hf)(t)values(−15.9 to−6.3)confirmed that TLP and HSM were likely generated by the partial melting of an ancient continental crust.TheεHf(t)(−7.4 to+4.0)values of inherited zircons in the TLP suggested that they were derived from the partial melting of Archean basement rocks.Considering the geochemical similarity of the 1.80 Ga A-type granitoids in the SNCC,we propose that the TLP and HSM were formed in a post-collisional regime that was likely associated with the break-off of the Paleoproterozoic subducted slab.Upwelling of the asthenosphere provided huge heat to generate the regional 1.80 Ga A-type granite in the SNCC.展开更多
The paper presents an overview of the relationships between the interior structures of tectonic terranes and the distribution of tectonic-metallogenic zones in Southeast Asia. Episodic tectonic activities occurred in ...The paper presents an overview of the relationships between the interior structures of tectonic terranes and the distribution of tectonic-metallogenic zones in Southeast Asia. Episodic tectonic activities occurred in this archipelagic area, generating metallogenic belts in multi-terranes. Since the Late Paleozoic, opening and closure of the Paleotethys and Neotethys led to multiple suture zones between different blocks, mainly between the Indochina terrane, the Nambung terrane, the Sibumasu terrane and the West Myanmar terrane. During the Mesozoic to Cenozoic, the formation of accreted terranes and their related islands was caused by subduction and collision processes between the Pacific and Australian plates toward the Eurasian Continent, forming Sundaland and its affiliated islands, the Philippines and its subsidiary islands, the Papua New Guinea terrane and its related islands and the Sunda epicontinental arc system. Within the margin of terranes resulted in the structural transfer zones, their secondary tectonic units can be divided into island arc belts, back-arc basins, suture zones, marginal fold belts and orogenic belts. The metallogenic assemblages are mainly distributed within these structural zones of the terranes. According to the relationship between these tectonic units and the distribution of mineral resources, the tectonic-metallogenic belts can be divided into 24 metallogenic belts in Southeast Asia. They are characterized by a diversity and frequency of metallogenic material combination which is likely to reflect the complexity of the material distribution during mineralization processes, mostly by the structural transformation during the dissociation-convergence process between multiple terranes. Therefore, the formation of ore deposits was not only restricted by the evolution(opening and closure) of Paleo-and Neotethys, but may also be controlled by the interaction of the terranes with different tectonic attributes which provided multiple sources of metallogenic material.展开更多
基金supported by the Natural Science Foundation of China(NSFC,Nos.U1603245,41703051,and U1812402)the Chinese Academy of Sciences“Light of West China”Program,and the Natural Science Foundation of Guizhou Province(No.[2018]1171).
文摘Paleoproterozoic A-type granites are widely distributed in the southern margin of the North China Craton(SNCC),providing important information for understanding the Paleoproterozoic tectonic regimes in this area.This paper reports newly obtained whole-rock compositions and zircon U-Pb ages for the Tieluping syenogranite porphyry(TLP)and Huoshenmiao alkali granite porphyry(HSM)in the SNCC.Zircons from the TLP and HSM have U-Pb ages of 1805±12 and 1792±14 Ma,respectively.These ages are taken to date the emplacement of these intrusions.They had high total alkali contents(K_(2)O+Na_(2)O>7.13 wt.%),with high 10000×Ga/Al ratios(3.06–3.41)and Zr+Y+Nb+Ce values(709 ppm–910 ppm)as well as high zircon saturation temperatures(864–970℃),indicative of A-type granite affinities.High Y/Nb(1.75–3.32),Ce/Nb(7.72–9.72),and Yb/Ta(2.89–5.60)ratios suggested that TLP and HSM belonged to the A2-type granite.The negative whole rockε_(Nd)(t)values(−8.4 to−6.6)and negative zirconε_(Hf)(t)values(−15.9 to−6.3)confirmed that TLP and HSM were likely generated by the partial melting of an ancient continental crust.TheεHf(t)(−7.4 to+4.0)values of inherited zircons in the TLP suggested that they were derived from the partial melting of Archean basement rocks.Considering the geochemical similarity of the 1.80 Ga A-type granitoids in the SNCC,we propose that the TLP and HSM were formed in a post-collisional regime that was likely associated with the break-off of the Paleoproterozoic subducted slab.Upwelling of the asthenosphere provided huge heat to generate the regional 1.80 Ga A-type granite in the SNCC.
基金financially supported by the Natural Science Foundation of China (Nos. 41573039 41673040 U1603245)
文摘The paper presents an overview of the relationships between the interior structures of tectonic terranes and the distribution of tectonic-metallogenic zones in Southeast Asia. Episodic tectonic activities occurred in this archipelagic area, generating metallogenic belts in multi-terranes. Since the Late Paleozoic, opening and closure of the Paleotethys and Neotethys led to multiple suture zones between different blocks, mainly between the Indochina terrane, the Nambung terrane, the Sibumasu terrane and the West Myanmar terrane. During the Mesozoic to Cenozoic, the formation of accreted terranes and their related islands was caused by subduction and collision processes between the Pacific and Australian plates toward the Eurasian Continent, forming Sundaland and its affiliated islands, the Philippines and its subsidiary islands, the Papua New Guinea terrane and its related islands and the Sunda epicontinental arc system. Within the margin of terranes resulted in the structural transfer zones, their secondary tectonic units can be divided into island arc belts, back-arc basins, suture zones, marginal fold belts and orogenic belts. The metallogenic assemblages are mainly distributed within these structural zones of the terranes. According to the relationship between these tectonic units and the distribution of mineral resources, the tectonic-metallogenic belts can be divided into 24 metallogenic belts in Southeast Asia. They are characterized by a diversity and frequency of metallogenic material combination which is likely to reflect the complexity of the material distribution during mineralization processes, mostly by the structural transformation during the dissociation-convergence process between multiple terranes. Therefore, the formation of ore deposits was not only restricted by the evolution(opening and closure) of Paleo-and Neotethys, but may also be controlled by the interaction of the terranes with different tectonic attributes which provided multiple sources of metallogenic material.