期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Hysteresis in sap flow and its controlling mechanisms for a deciduous broad-leaved tree species in a humid karst region 被引量:12
1
作者 Rongfei ZHANG Xianli xu +5 位作者 Meixian LIU Yaohua ZHANG chaohao xu Ruzhou YI Wei LUO Chris SOULSBY 《Science China Earth Sciences》 SCIE EI CAS CSCD 2019年第11期1744-1755,共12页
The critical zone(CZ) represents the intersection of the biosphere with the atmosphere, hydrosphere and lithosphere.Understanding the hydrological processes and human impact factors on the CZ is fundamental to sustain... The critical zone(CZ) represents the intersection of the biosphere with the atmosphere, hydrosphere and lithosphere.Understanding the hydrological processes and human impact factors on the CZ is fundamental to sustainable water resources management for agroforestry. Transpiration(T) is an important component of terrestrial evapotranspiration(ET), and understanding the time lag(TL) between vegetation transpiration and meteorological factors can improve our knowledge of the mechanisms of vegetation adaptability to a changing environment. However, the controlling factors on the TL remain poorly understood. Therefore, the objective of this study is identifying the temporal dynamics of key controlling factors on the TL, using a typical deciduous broad-leaved tree species(Zenia insigins Chun) of CZ in subtropical humid karst regions. This species is used as an example to explore the characteristics of the TL between SF(sap flow) and hydro-meteorological forcing. Sap flow in these 6 trees was monitored using the thermal dissipation probes(TDP). Results showed that:(1) the peak of diurnal sap flow generally lagged behind PAR but preceded Ta(air temperature), RH(relative humidity) and VPD(vapor pressure deficit), with the mean TL of-67.4 min(PAR), 90.5 min(Ta), 91.6 min(RH) and 92.9 min(VPD), respectively;(2) TL had no significant relationships with the daily mean meteorological factors and soil moisture, but was highly(R^2>0.66) correlated to CRs(changing rates of meteorological factors) in the morning;(3) At seasonal scale, the sap flow rate and TL both were controlled by the seasonality of precipitation and temperature. Overall, the seasonality of the TL was caused by plants' high water loss and strongly active physiological response in hot seasons, leading to close stomata earlier than in cold seasons;(4) The reason why CRs proposed can explain the TL better than mean values of metrological factors is that the CRs considered the distribution and change processes of metrological factors in the daytime. This study may be helpful for understanding the physiological response of vegetation to climatic change, and may be useful for constructing models to simulate transpiration processes more accurately during a day. 展开更多
关键词 ECO-HYDROLOGY Soil HYDROLOGY LANDSCAPE ECOLOGY Earth's critical zone
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部